首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
天然气管线泄漏射流火焰分析   总被引:2,自引:0,他引:2  
高压天然气输送管线失效泄漏时会形成气体射流,如果在泄漏裂口处被点燃,则将形成射流火焰。火焰的强烈热辐射严重威胁到周围人员和财产的安全。为此,在对大量试验结果和相关理论分析研究的基础上,以平截头圆锥体来近似描述射流火焰的形貌,给出了火焰的几何基本参数的计算公式。在预测火焰的热辐射时,将火焰中心模拟成一个点源,提出了热辐射强度的简便计算方法。此外,结合具体实例,根据自编软件计算了不同风速条件下射流火焰的几何尺寸、离管线泄漏点不同距离处的热辐射强度以及人体感觉疼痛所需时间,并利用概率模型的方法分析了在一定暴露时间下人员受伤害的几率以及人员和建筑物的安全距离。结果表明,射流火焰长度随风速增加而逐渐减小;随离火焰中心距离的增加,热辐射强度大大降低,而造成人体伤害所需时间延长。所给出的数学模型和热辐射强度的计算方法,为输气管线的优化设计和风险后果的定量分析提供了依据。  相似文献   

2.
分区域-多点源的高架火炬安全距离计算模型   总被引:1,自引:0,他引:1  
陈国华  黄庭枫  梁栋 《天然气工业》2013,33(12):168-172
高架火炬安全距离的大小直接影响土地资源利用及安全问题,其值的确定取决于能否准确地计算出高架火炬射流火焰产生的热辐射,传统的高架火炬热辐射计算模型可分为点源模型和固体火焰模型两大类。前者计算简单但精度较低,后者精度较高但计算较为繁琐。为此,结合点源模型和固体火焰模型各自的优点,在点源模型的基础上进行改进,提出了分区域-多点源的高架火炬安全距离计算新模型,并通过FLUENT软件进行全尺寸数值模拟,将数值模拟结果与设计规范使用的常规单点源及多点源模型计算结果进行了对比。结果表明:新模型可以较为简便地计算出高架火炬射流火焰产生的热辐射,最大误差为6.2%。结论认为:新模型快速简便且精度较高,可以克服现有规范标准中对热辐射强度估计过高、安全距离划分过于保守的不足,有助于合理划定高架火炬安全距离,为高架火炬设计规范的完善与改进提供了科学的依据。  相似文献   

3.
利用数值模拟方法,选用标准的K-ε湍流模型、PDF扩散燃烧模型、离散坐标辐射传热模型,研究了燃烧器结构对气体火焰形状和炉内温度分布的影响,主要考察了不同燃烧器喷孔直径、喷孔角度和旋流角度下速度、温度、火焰形状等参数的变化规律.结果表明, 喷孔直径越小,喷孔出口速度越大,速度峰值也越大,射流的影响区域越大,燃料与空气的混合越好,燃烧速率越高,燃烧的火焰越短、越窄;喷孔角度和旋流配风也可以增强混合、强化燃烧,但其对火焰形状及长度和炉内整体的温度分布影响很小.因此,若要提高辐射传热效率,只能从配风和火道形状的优化入手,开发新结构的高效燃烧器.  相似文献   

4.
酸性气田井喷点火有效空间范围数字模拟   总被引:3,自引:0,他引:3  
在井喷酸性天然气形成射流的可燃空间范围内进行主动点火是控制酸性气田井喷事故危害范围与危害程度的有效方法。对含CO2、H2S的天然气井喷情况进行了理论分析,建立了与实际情况接近的几何模型,采用CFD模拟的方法,对不同压力、不同风速、不同酸性气体含量的井喷情况进行了模拟研究,获得了射流速度场、浓度场,得到了不同情况下的有效点火空间范围。  相似文献   

5.
黄佳  张昭  郑勇刚  张洪武 《测井技术》2011,35(5):487-493
基于SPH方法对射孔枪射孔过程进行了模拟,并实现高速射流情况下的射孔过程仿真.计算了射孔弹弹型不变的情况下以40CrNiMo为材料的枪筒,在不同射流速度下盲孔毛刺高度值,不同射流速度和不同盲孔深度下的穿孔直径以及不同材料下毛刺高度值.通过计算发现,盲孔毛刺高度随射孔速度的增加而降低,且高度值变化幅度越来越小;射孔枪的穿...  相似文献   

6.
天然气管道火灾危害范围定量评价模型分析   总被引:1,自引:0,他引:1  
介绍了用于评价天然气管道失效危害的喷射火灾危害范围评价模型、GRI—00/0189危害范围评价模型及API pub 581危害范围评价模型的定量评价计算方法。以某天然气管道发生穿孔泄漏为实例,进行了模拟定量评价并做了对比分析。分析结果表明,喷射火灾模型与GRI—00/0189模型的危害半径相近,后者略大;GRI—00/0189模型得出的死亡区面积略大于另外2种模型得出的面积,其评价结果较为保守,分析得出的安全距离为200·5m。  相似文献   

7.
采用计算流体动力学软件Fluent建立气体扩散模型,对Burro系列试验进行模拟计算,对比分析不同距离监测点体积分数(后文称浓度)最大值以及浓度范围随时间的变化趋势,结果表明模拟值与试验值基本吻合,模型结果略偏保守。利用验证的CFD模型方法对海上气体泄漏扩散事故实例进行船周气体浓度分布研究,分析不同泄漏强度、风速下抢险船安全作业距离,研究表明:浮力和船体阻碍可影响船周气体浓度分布;抢险作业安全距离随泄漏速度的增大而增大,随风速的增大而减小,且受泄漏速度与风速的联合影响。该模型可为海上气体泄漏扩散应急抢险作业安全指导提供参考。  相似文献   

8.
��Ȼ���ܵ�й©��ɢģ���о�   总被引:39,自引:6,他引:33  
天然气管道发生泄漏扩散是输气管道事故危害的根本原因,因此建立输气管道泄漏扩散的合理模型是正确评估输气管道事故损失后果的关键技术之一。通过分析高斯(Gaussian)模型、Sutton模型和重气模型等常见气体扩散数学模型在模拟天然气管道泄漏扩散过程中的局限性,结合天然气管道泄漏扩散过程的特殊性,在同时考虑输气管道孔口泄漏过程的射流作用和膨胀效应,以及重力作用和水平风速对天然气扩散的影响效果的基础上,建立起了适合天然气管道泄漏特点的扩散模型。该模型从考虑因素的合理性和气体泄漏边界条件的选取上都更加符合天然气管道泄漏扩散过程的实际情况。此外还对新建模型的科学合理性和使用可靠性进行了算例模拟分析检验。  相似文献   

9.
城市埋地天然气管道泄漏扩散数值模拟   总被引:2,自引:2,他引:0  
针对城市埋地天然气管道穿孔泄漏扩散问题,结合有限容积法,利用Gambit 2.4建立了天然气管道不同泄漏位置的CFD仿真模型,利用Fluent 6.3分别对天然气管道上部、下部及背风侧3种泄漏工况下,气体在土壤中和空气中的扩散规律进行了数值模拟。研究结果表明,下部泄漏在土壤和空气中的危险范围最大,关闭泄漏管段两端阀门以后,气体扩散危害范围逐渐变小。研究结果为城市埋地天然气管道泄漏事故现场人员疏散及安全抢修提供了理论依据。  相似文献   

10.
风力对天然气管道泄漏后扩散过程的影响研究   总被引:4,自引:2,他引:2  
天然气管道发生泄漏扩散是输气管道事故危害的根本原因,而风力是影响泄漏后天然气扩散过程的一个极为重要的因素,建立有风条件下天然气泄漏扩散的位移量计算模型是正确评估输气管道事故损失后果的关键技术之一。通过风速与风压关系的研究,确定了风速分布关系式;并结合管道泄漏扩散过程的特殊性,在考虑管道孔口泄漏过程的射流作用和膨胀效应,以及重力作用影响效果的基础上, 重点考虑了水平风速的影响,给出了在风力作用下泄漏后天然气团偏移量的计算公式,建立了三维空间内的位移量计算模型,并进行了实例计算。结果表明,风力的存在将加剧天然气的扩散,使泄漏的天然气团顺风向偏移,其偏移尺寸远大于其他两个方向,大大增加了天然气泄漏后的危害面积。  相似文献   

11.
天然气管道孔口泄漏危险域的研   总被引:6,自引:0,他引:6  
杨昭  赖建波  韩金丽 《天然气工业》2006,26(11):156-159
天然气管道的泄漏严重威胁到泄漏点附近的生命财产安全,管道泄漏造成的最大危险是火焰热辐射和气体爆炸。为此,通过建立泄漏率模型、气体喷射扩散模型和火焰热辐射数学模型,研究了非等温天然气管道孔口泄漏的危险范围。根据气体的着火下限和目标的热毁伤阈值得到了气体喷射和火焰喷射的危险距离,分析了输气压力、管径、泄漏率和泄漏点位置对危险距离的影响,为管道的安全建设提供了理论依据。  相似文献   

12.
为了对径向钻井倾斜井底高压水射流的流场进行研究,建立了三维单喷嘴水射流井底模型,采用Fluent软件对模型的流场结构进行了数值模拟分析。分析结果表明,径向钻井高压水射流喷嘴外部流场中存在"负压效应"和"水垫现象",负压的存在有利于射流从喷嘴内部流出,水垫会对喷头的推进产生阻碍作用;当径向钻井临时井底倾斜角度为0°时,射流到达井底后沿井底壁面中心向外对称流动,但随着井底墙壁倾斜角度的增大,由于倾斜井底的引流作用,大部分流体会沿着井底倾斜的方向流动,并且沿倾斜方向的流速较大;径向钻井中,如果井底是倾斜的,则沿着井底倾斜方向的压力比井底另一侧高。  相似文献   

13.
高压水射流PDC钻头结构参数数值模拟研究   总被引:1,自引:1,他引:0  
以中硬细砂岩为岩石材料,应用动态有限元法对高压水射流PDC钻头参数做了数值模拟研究。得出如下结论:(1)高压射流入射角对不同岩层存在最优值,对于中硬地层细砂岩最优入射角为40°;(2)PDC钻头钻进中钻齿所受扭矩随作用半径增大成指数规律增长,在硬地层钻进钻齿前倾角为-15°时破岩效果最佳;(3)采用直径1.8mm的高压小喷嘴射流能显著改善PDC钻头钻齿受力,避免钻齿冲击破坏,延长钻头寿命;(4)高压水射流与机械齿联合破岩时,喷嘴与钻齿相对位置对破岩效果有显著影响,喷嘴处于钻头外锥时,可均化钻齿受力,提高破岩效率。  相似文献   

14.
90°方弯管内气相流场的数值模拟与分析   总被引:2,自引:0,他引:2  
采用Fluent软件提供的大涡模拟(LES)方法对90°方弯管内气相流场进行了数值模拟,重点考察不同空间倾角对弯管内二次流形态的影响规律。模拟结果表明,90°方弯管下倾后,其内部的气相流场与水平弯管存在较大差异,二次流现象延缓发生,回流区减少,有利于改善弯管内的流动状态;随着空间倾角的增大,弯管出口截面的切向速度不断增加,有利于流场内气固两相的分离,但系统压降也随之增大,导致系统能量损耗,因此工程应用中应优化确定合适的空间倾角。  相似文献   

15.
为了探究高含硫天然气在复杂山地条件下的扩散规律、分布特征和外部安全防护距离,建立了泄漏源周边半径3 km范围的山区地形模型,分别测试了8个典型风向、3个来流风速共24种工况下的气体浓度,采用基于风险的方法研究了各类防护目标的安全防护距离。研究结果表明:①高含硫天然气的扩散过程可归纳为“顺坡扩散”和“切坡扩散”两种模式,风速、风向、地形及其相互作用是影响扩散过程和危害范围的重要因素,扩散过程表现出非均匀、非定常特征,并且分布各异;②复杂地形影响下的危险区域会沿多个方向扩展,并且形状很不规则,Ⅲ~Ⅱ级危险区域的最大影响距离是东北方向1 500 m,Ⅰ级危险区域的最大影响距离是东北方向1 200 m;③与平坦地形显著不同的是,复杂地形下的风向对扩散危害范围有显著影响,风速为1 m/s、2 m/s和4 m/s时,W风向最大浓度分别是N风向最大浓度的18.2倍、26.8倍和22.9倍;④在地形和风向共同作用下,不同防护目标在不同方向的安全防护距离为60.5~727.8 m,同一类防护目标在不同方向的安全距离相差约2倍。结论认为,采用风洞实验与定量风险评估相结合的方法,可以全面、有效地研究高含硫天然气扩散特征和安全防护距离。  相似文献   

16.
变差函数在沉积微相自动识别中的应用   总被引:7,自引:0,他引:7  
提出了一种建立沉积微相测井识别模式的新方法,即利用变差函数对测井曲线的形态进行研究,并将不同方向上的变程作为定量刻画参数,来分析各个方向变程所蕴含的沉积学意义。0º方向的变程反映沉积环境的能量稳定程度;90º方向变程反映水动力动荡程度;45º和135º方向变程分别反映正韵律和反韵律特征。变程星形图可全面地刻画测井曲线的形态特征,反映沉积环境的水动力变化规律。以多方向变程为主要参数建立的定量识别模式,对微相分类明显,易于导入各类模式识别方法中,从而提高微相识别的效率和准确度。  相似文献   

17.
地层出砂及射孔对套管屈曲损坏的影响分析   总被引:1,自引:0,他引:1  
油藏出砂后,上覆地层重力转移到套管轴向上,当轴向载荷超过套管临界屈曲载荷后,套管发生屈曲损坏。建立了考虑射孔的套管屈曲损坏有限元力学模型,旨在探讨射孔参数对出砂引起套管临界屈曲载荷的影响,从而确定合理的射孔参数,提高套管临界屈曲载荷,为预防出砂引起的套管屈曲损坏提供理论支撑。计算结果表明,在出砂严重的地层,应选择合理的射孔孔密和相位,避免选用相位180°射孔。如果出于产能考虑,必须要采用180°相位射孔,射孔孔密严禁超过44孔/m。当射孔密度大于22孔/m时,应选择90°相位射孔。  相似文献   

18.
Abstract

An appropriate scheme is very important to the design of underground oil storage caverns. The layout and direction of caverns, the shape and dimension of section, the construction sequence, and excavation methods will have different effects on the optimum design and long-term stabilities of storage caverns. Considering these actual characters in the numerical simulation experiment for the design of underground oil storage caverns, the orthogonal experiment design is applied to the optimizing design of the caverns, and the optimum layout and directions of the caverns, the appropriate dimensions of the section, the optimum horizontal spacing between caverns, and construction sequence have been obtained. The corresponding calculation methods on the experiment parameters have been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号