首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
高含硫气井井筒中硫沉积会堵塞气流通道,严重影响气井产能,加速生产管柱的腐蚀。准确弄清井筒硫液滴的动力学特征及其携带规律,对于优化气井工作制度、预防井筒中硫沉积具有重要意义。由于硫液滴与水液滴相比,黏度更高、密度更大,因此不能将水液滴动力学特征直接用于硫液滴携带规律的研究。现有Turner圆球模型、Coleman圆球模型、李闽椭球模型、王毅忠球帽模型等用于气井液滴携带的临界气流速预测方法,不能用来准确预测含硫气井硫液滴的携带临界气流速。文中首先建立了描述气井井筒湍流场中硫液滴的动力学模型及求解方法,模型中采用流体体积函数法(VOF)模拟液滴表面结构,利用直接数值模拟方法模拟硫液滴周围气流场,研发了液滴动力学特征模拟器,对硫液滴的形状特征、破碎条件及曳力系数进行了模拟;在此基础之上,对硫液滴进行受力分析,建立了气井硫液滴携带数学模型。最后,以四川某含硫气田的现场数据对模型的准确性进行验证,结果表明,该模型具有良好的适用性。  相似文献   

2.
准确预测气井临界携液气流量,对优化气井工作制度、排除井筒积液具有重要意义。现有液滴模型未考虑液滴变形和液滴大小的影响,将临界韦伯数取为定值或认为临界携液气流量与临界韦伯数无关,导致模型的关系式系数为定值,存在一定理论不足。综合考虑液滴变形和液滴大小特征,由液滴质点力平衡理论和能量守恒原理导出了气井临界携液气流量计算新模型。新模型的关系式系数随压力增大而变大,为1.92~5.30,弥补了现有液滴模型的关系式系数为定值的缺陷。现场应用表明:新模型预测大牛地气田气井积液状态与实际较吻合,可满足生产要求。  相似文献   

3.
气井连续携液机理   总被引:16,自引:4,他引:12  
王志彬  李颖川 《石油学报》2012,33(4):681-686
平行气流中的液滴趋于椭球状,而低黏度液滴临界韦伯数 Wecrit 相差较大,在2.2~60变化,而已有的携液模型未综合考虑液滴变形和液滴尺寸差异对气井临界携液气量的影响。根据液滴质点力平衡理论,笔者导出了气井临界携液气量预测新模型。新模型引入的特征参数 Ck,Wecrit 综合考虑了液滴变形和最大液滴尺寸差异对携液气量的影响。根据一般能量守恒原理,推导出了液滴变形程度与临界韦伯数的函数关系,计算结果与实验数据和DDB模型预测结果一致,误差小于6%。新模型的关系式系数 Ck,Wecrit 在2.14~4.79变化,而根据文献数据和国内气田临界气流量反算的系数 Ck,Wecrit 在1.86~5.0变化。新模型从机理上解释了各气田临界携液气量相差较大和个别气田临界携液气量较低的原因,并以大牛地气田为例介绍了该模型的应用。  相似文献   

4.
目前应用广泛的临界携液流量预测模型大多以垂直井作为研究对象,并未考虑井斜角度对携液的影响,造成倾斜气井临界携液流量预测值与实际情况存在较大偏差。针对倾斜气井是否出现积液问题,基于液滴受力平衡分析,建立考虑液滴形变与井斜角度影响的气井临界携液流量预测新模型。根据能量守恒方程,推导得到临界韦伯数与液滴变形参数的函数关系式。基于椭球形液滴假设,考虑液滴内部流动及液滴形变影响,将邵明望模型计算结果下调15%作为椭球形液滴的曳力系数。结合实例与Turner模型、李闽模型、王志彬模型、杨文明模型和Belfroid模型进行对比分析发现,新模型准确程度较高,计算精度提高14.49%~16.80%,能正确判断气井积液情况,与现场实际情况吻合,可以有效指导气田安全、合理生产。  相似文献   

5.
为了判断气井是否积液同时优化气井配产,基于气流中液滴总表面自由能与气相总湍流动能相等的关系,建立了考虑液滴直径、液滴变形及变形对液滴表面自由能影响的气井临界携液流速计算模型(以下简称新模型):基于椭球体假设,通过分析液滴变形对液滴表面积及表面自由能的影响,建立起液滴最大迎风面直径的计算公式;考虑液滴变形对液滴所受曳力的影响,提出针对椭球形液滴的临界携液流速表达式;考虑液滴变形和液滴内部流动的影响,将Brauer模型基于圆球体的曳力系数计算值增大20%作为变形椭球体的曳力系数;基于能量守恒原理提出液滴变形参数与临界韦伯数函数关系式,并将计算结果下调10%;采用考虑气井压力和温度影响的表面张力计算公式。将新模型与Turner模型、李闽模型、王毅忠模型、王志彬模型和熊钰模型进行对比,并在44口气井开展了现场验证。结果表明,新模型的预测结果与气井的实际状况吻合最好。结论认为,新模型可用于对气井积液的判断。  相似文献   

6.
王毅忠根据格雷斯的研究结果,认为被高速气流携带的液滴呈球帽形,并按照类似李闽推导扁平形液滴临界流速的方法导出了一个新的气井携液的临界流速和流量计算公式。这些公式计算出的临界流速和流量只是李闽临界流速和流量的71.6%,在没有与现场实际数据进行比较的情况下,将导出的临界流速和临界流量计算公式上浮了25%。通过对格雷斯图版的研究发现,气泡在液体中上升时才会出现球帽形,而在连续相为气体中运动的液滴并不适用。因此,按球帽形假设推导出的临界携液流速和流量计算公式缺乏理论依据。  相似文献   

7.
分析当前应用较为广泛的液滴模型,针对低压气井携液模型的缺点,结合气井积液实验,一定程度上揭示了气井携液的机理。分析认为,Coleman模型忽略了液滴变形对携液临界流量的影响,导致计算结果较真实的临界流量偏大;而李闽模型没能考虑椭球形液滴在井筒内翻转造成的能量损失,计算结果偏小。由实验结果可知,实测的携液临界流量处在Coleman模型与李闽模型之间,分析认为是由于液滴翻转带来的能量损失足以抵消液滴变形产生附加能量。根据液滴模型的基本原理,结合气井积液实验的结果,给出了低压气井携液模型以及计算公式,新模型中引入修正因子表征液滴翻转的影响,较真实的反应了气井携液的真实情况。新模型的计算结果与Coleman的实验数据进行比较,误差较小、预测精度较高、应用效果较好。  相似文献   

8.
Turner模型和李闽模型是国内外气田现场应用广泛的临界携液流量模型,二者均没有考虑流动条件对携液气量的影响,将曳力系数取为常数,而高度湍流区雷诺数的变化对曳力系数影响较大,从而使模型的计算结果与现场实际数据吻合度较低。基于这一问题,考虑液滴变形对携液气量的影响,并引入GP模型计算高度湍流区液滴的曳力系数,建立了基于高度湍流条件下的气井临界携液流量模型。新模型提出了一种简化的液滴变形参数计算方法,并考虑了高度湍流区曳力系数随雷诺数的变化。将新模型与Turner模型、李闽模型进行对比和验证,结果表明,新模型的预测结果与气井实际数据吻合最好,可以准确预测高度湍流条件下气井临界携液流量,对于气井的合理配产具有指导作用。  相似文献   

9.
气井连续携液模型比较研究   总被引:7,自引:0,他引:7  
气田生产出的天然气中常常含有一些液相物质。若天然气没有充足的能量把液体举升出地面,液体将在井中堆积形成积液,影响气井的生产能力。积液有时会完全压死气井。已有许多气井连续携液的关联式。为了更好地理解和采用正确的气井连续携液临界流量计算关联式,确定气井的合理产量,对李闽和Turner的气井连续携液模型进行了比较研究,比较的内容包括:液滴在高速气流中的形状;曳力系数;临界流速计算公式;用现场实际数据对李闽和Turner的气井连续携液模型进行比较。结果表明李闽气井连续携带公式计算的临界流量与实际的生产情况吻合。为了便于现场应用,导出了临界流量和产量的计算公式。  相似文献   

10.
在Zhou的多液滴模型基础上,通过可视化实验装置,采用压缩空气和水作为介质模拟气井气流携液过程,验证分析了Zhou的多液滴模型。通过大量实验数据分析发现:气体达到携液临界流速、持液率大于0.008 5时,气井开始出现积液,比Zhou所提出的0.010 0有所偏小;在持液率大于0.008 5时,加大气流速度到某值时,液体可以全部被携带出井口,且随着持液率的提高,所需的临界流速也随之增加。该文根据实验数据修正了Zhou的多液滴模型,提出了与实验数据相吻合的新模型,可用于高含水气井排水采气研究与工程实际应用。  相似文献   

11.
刘刚 《断块油气田》2014,(3):339-340
气井最小携液临界流量是气藏开发方案编制中的一个重要参数.目前现场主要应用Turner和李闵公式进行气井携液临界流量的计算.但这2个公式具有一定的局限性,都没有考虑界面张力对携液临界流量的影响,在计算时将气水界面张力简化为常数进行计算,而实际上界面张力是温度与压力的函数.因此,文中对现有计算公式进行了修正,并根据实际气井情况进行了计算,结果表明,在计算气井携液流量时应该考虑界面张力,其计算结果更为客观、实际.  相似文献   

12.
定向气井连续携液临界产量预测模型   总被引:12,自引:0,他引:12  
针对定向气井比直井更难于排水采气的问题,对于高气液比(气液比大于1 400 m3/m3)的产水定向气井,Turner等人建立了圆球液滴模型计算高气液比临界产量,并应用于现场实践;同时李闽等人提出了椭球液滴模型,有效地指导了气田生产。但是传统的液滴携液计算模型在预测高气液比定向气井临界产量时,忽略了井斜角度变化对临界产量的影响,导致了定向气井临界产量的计算结果与实际情况有较大的偏差。根据井斜角度、曳力系数与雷诺数(在1×103~2.2×105或2.2×105~1×106范围之间)的关系,建立了定向气井高气液比携液临界产量预测模型,预测模型可用于计算高气液比定向气井的携液临界产量。通过实例对比分析表明,该预测模型计算结果与现场生产实际更加吻合,从而验证了该预测模型的可靠性和准确性。  相似文献   

13.
大斜度气井临界携液产量预测新方法   总被引:1,自引:0,他引:1  
目前广泛应用的天然气临界产量计算模型都是建立在直井的基础上,没有考虑井斜角对携液的影响.根据大斜度天然气井中液滴运动特点,以应用最普遍的Turner模型为基础,考虑井斜角的影响对Turner模型进行了修正,推导出大斜度气井临界携液产量预测公式,并给出了Turner公式修正系数.  相似文献   

14.
目的Turner模型和李闽模型是现场应用比较广泛的气井携液模型,二者是以直井为基础建立的,且假定曳力系数为定值,没考虑井斜角和曳力系数对临界携液流量的影响。为了准确预测天然气斜井临界携液流量,分析了天然气斜井中液滴的受力情况,建立了预测天然气斜井临界携液流量新模型。 方法该模型考虑了雷诺数变化对曳力系数的影响,对比不同曳力系数计算模型的精确度,优选出Barati模型计算天然气斜井中液滴的曳力系数,推导了该模型相对于Turner模型的修正系数,并给出了修正系数表。 结果通过实例将新模型与Belfroid模型、杨文明模型和李丽模型进行比较,结果表明,新模型计算结果与现场数据吻合最好,准确率为94.6%。 结论新模型可用于对天然气斜井积液的判断。   相似文献   

15.
气井积液是产水气藏开发设计和气井生产管理面临的重要问题,但目前对气井流动机理与携液预测还存在争议。从气液两相流的基本流动机理出发,建立了考虑液滴变形和井斜影响下气井井筒的流型、温度、压力与携液综合预测模型,并用实际井数据对模型进行了验证。结果表明,所建模型可用于直井、斜井和水平井的产水气井井筒温度压力预测,预测误差小于5%;在环雾状流动情况下,井筒内液体以液滴和液膜的形式被完全带出井口,不会出现井筒积液;对常规垂直气井,利用井口数据便能判断气井积液情况,Turner模型计算气井携液临界值较实际值偏大,李闽模型计算结果明显偏小,建议采用彭朝阳模型计算气井携液临界值;对斜井和水平井,则需要同时考虑液滴变形和井斜的影响,水平井近水平段携液临界流速和流量明显较垂直井段小,而造斜井段携液临界流速和临界流量随井斜角的增大先增大后减小,在井斜角为30°~60°之间达到最大值,因此造斜井段是气井积液判断的重点部位。  相似文献   

16.
气井稳定携液之我见   总被引:1,自引:0,他引:1  
业内对于临界携液流量的认识一直都存在着分歧。以Turner、李闽为代表的液滴携液理论观点认为"当气体流速达到一定数值后,液相分散成小液滴被携带走";而以李颖川等为代表的气液两相管流实验模拟者则认为"在气井生产过程中雾状流很难出现,气井生产基本上是以段塞流为主,液滴模型无法解释气井实际排液情况"。为了还原低压低产气井实际生产状态,基于弗劳德相似准数,以流速相似原理模拟低压、低产井实际生产情况,并开展了相应的实验研究。结果表明:①低压、低产气井实际上存在"上雾+下段塞"混合流动状态;②上部雾状流携液满足液滴模型计算结果,当气相流速高于临界携液流速则上部可连续带液,否则会导致积液段液量缓慢增加;③下部表现为段塞流,当气相流速高于1.95 m/s,则表现为连续流动,气井基本无积液,当气相流速低于0.195 m/s,则表现为难以流动,气井不产液,面临水淹。实验所得结果与气井实际生产情况相当吻合,可以为气井有效开采提供技术支撑。  相似文献   

17.
气井井下节流是气田低成本开发的一项关键技术,“井下节流+泡沫排水采气”工艺在适宜条件下可提高气井带液能力。采用传统气液两相嘴流压降模型开展泡排井井下节流气嘴尺寸设计不能满足气井配产要求,通过节流压降规律测试并建立或者完善数学模型有助于提高泡排井井下节流设计水平。设计并搭建了泡沫排水采气井井下节流物理模拟实验装置,利用泡排剂UT-11开展了在不同泡排剂质量分数情况下的节流压降规律测试,利用实验数据对4个常用气液两相嘴流机理模型(Sachdeva模型、Perkins模型、Ashford模型、滑脱数值模型)进行了嘴流流态过渡预测能力评价、质量流速及嘴前压力的预测能力评价。基于实验数据构建了泡沫流滑脱因子计算关系式,提高滑脱数值模型的准确性,质量流速的绝对百分误差从13.7%降至7.69%,嘴前压力的绝对百分误差从16.5%降至8.01%。该研究为泡沫排水采气井井下节流嘴径设计和嘴前压力预测提供了重要理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号