首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
江艳平 《录井工程》2015,26(2):71-73,93
阿尔奇公式中岩电参数的准确性决定了储集层含水饱和度模型的精度。岩电参数一般通过常压条件下的岩电实验分析求取.而理论上覆压条件下岩电实验得到的参数更准确。为了分析两种实验条件对饱和度模型的影响.研究了大港地区风化店油田单井岩心两种实验条件的岩电数据.结果表明压力对岩性系数b、饱和度指数n值影响较大,对岩性系数a、胶结指数m值影响不明显。结合多井试油结果分析得出,两种实验条件所确定的饱和度模型误差均在储量规范合理范围内.且均能准确进行储集层流体识别,进一步验证了该区经验含水饱和度模型的准确性。研究认为在油田开发中.采用常压岩电实验足以满足油田开发中油气层识别的需要;在油藏量化规模研究中.更宜采用覆压岩电实验.以确保饱和度值的高精度。  相似文献   

2.
岩心实验测试过程中岩石孔隙度的测量会存在一定的误差,孔隙度绝对误差大小会直接影响到胶结指数m值和饱和度指数n值的求解精度,也会影响到含水饱和度的精确计算.通过理论推导和岩电实验数据分析,探究了孔隙度绝对误差对胶结指数m值的影响以及饱和度指数n值绝对误差对含水饱和度Sw的影响程度,对于提高岩电实验参数的应用效果和对油气储层的正确评价具有重要意义.  相似文献   

3.
普光地区缝洞性储层岩电参数影响因素分析   总被引:2,自引:0,他引:2  
在对普光地区189块岩心岩石物理实验资料分析的基础上,讨论了地层水矿化度、泥质含量、温度以及孔、洞、缝发育程度对孔隙结构指数m值和饱和度指数n的影响.认为,随地层水矿化度的增大,m、n值呈增大趋势;随温度和孔隙度的增大,m增大,n减小.利用岩电实验资料,做出了地层因素-孔隙度关系图版和电阻率增大系数-含水饱和度关系图版,从而计算出m、n值.经过现场实例验证,测井处理计算的含水饱和度与岩心分析含水饱和度相关系数较高,表明利用该规律选择的岩电实验参数m、n值适合缝洞性储层的含水饱和度计算.  相似文献   

4.
复杂孔隙结构储层变岩电参数饱和度模型研究   总被引:1,自引:0,他引:1  
对于复杂孔隙结构储层,传统的阿尔奇公式计算出的含油饱和度偏低,导致解释过程中漏失油层。阿尔奇公式中岩性系数a、胶结指数m和饱和度指数n受诸多因素影响,在使用时不应为一定值,而应随储层性质的变化而变化。利用××油田复杂孔隙结构储层14口井130块岩心岩电实验资料进行统计分析发现,岩性系数a与胶结指数m存在明显的幂函数关系。在单因素分析的基础上采用多元回归分析法建立饱和度指数的计算模型,修正了阿尔奇公式,建立了变岩电参数饱和度修正模型。实际资料处理表明,变岩电参数饱和度修正模型计算的解释误差比传统的阿尔奇公式提高10%以上,满足了储量计算误差要求,有效克服了传统的阿尔奇模型在复杂孔隙结构储层解释中的不适用性。  相似文献   

5.
阿尔奇公式中的m,n参数不但与地层岩性和孔隙结构有关,而且还与地层水矿化度,围压和温度的变化有关,本文从岩石物理实验研究入手。以TZ2井等多口井的低孔低渗岩心作为岩电实验研究对象,研究了m,n值随地层水矿化度Pw,围压P和温度T的变化规律。并给出了其理论证明依据。实验发现胶结指数m随围压和矿化度的增大而增加,随温度的升高而减小,饱和度指数n也随地层水矿化度增加而增大,与温度和围压的关系类似于m指数与温度和围压的关系。这为利用阿尔奇公式解释地层含油气饱和度和冲洗带残余油气饱和度提供了可靠的m,n值。  相似文献   

6.
地层条件下岩石电性特征实验研究   总被引:9,自引:2,他引:7  
在高温(80℃)、高压(15MPa)条件和常温常压条件下,分别测定岩石的地层因素和饱和度指数,进行对比实验。实验结果表明:地层因素对温度不敏感而对净上覆压力较敏感,高压条件下地层因素高于常压条件;饱和度指数对温度敏感性较弱,对有效应力敏感,含水饱和度高时电阻增大率接近,含水饱和度低时高压条件下的电阻增大率低于常压条件。与地面条件相比,地层条件下测得的岩性系数a增大,胶结指数m、饱和度指数n和岩性系数b减小。用地层条件下测得的特征参数计算的含水饱和度比地面条件下小。应该在模拟油藏实际有效应力条件下测定岩石电性参数。图4表1参5  相似文献   

7.
岩石电阻率参数(简称岩电参数)是利用测井资料开展油藏含油饱和度评价及储量计算不可或缺的重要资料,室内岩心测试是获得岩电参数的唯一途径。以胜利油区低渗透砂岩油藏岩心为测试对象,从实验方法和实验条件2个角度,开展低渗透砂岩油藏岩电参数测试结果的影响因素分析,基于岩电参数的单因素比对实验,研究驱替方式、驱替介质、温度、围压及水矿化度对胶结指数m、饱和度指数n及岩性系数a和b的影响。研究结果表明,半渗透隔板法的准静态驱替过程与油藏成藏过程相似,且不受驱替介质类型影响,岩电参数对实验温度变化不敏感,但受围压和地层水矿化度影响显著。基于上述认识,确定适用于低渗透砂岩油藏的岩电参数测试方法:根据地层水矿化度配制等矿化度的实验用水,采用半渗透隔板法进行气驱水或油驱水,在室温条件下模拟地层有效上覆压力,开展低渗透砂岩油藏岩电参数测试。  相似文献   

8.
 在12Hz至100kHz频率范围内,测量不同矿化度的含水岩心和不同含水饱和度的含油岩心的电阻率,通常利用幂指数回归的方法,给出阿尔奇公式中的胶结指数m、岩性系数a、饱和度指数n、系数b的频散特性曲线;采用多矿化度方法,给出Waxman-Smits模型中的参数B的频散特性曲线。通过实验分析发现,阿尔奇公式和Waxman-Smits模型中的各参数都存在着不同程度的频散现象,从而使不同频率下的电阻率计算出的含水饱和度的值有所不同。因此在进行储层测井评价时,要根据电阻率测井所应用的测量频率,通过岩石电性参数频散特性的实验研究,选择相应的解释模型参数对岩石电性频散作用引起的差异进行校正。  相似文献   

9.
通过对姬塬地区长8储层大量岩心岩电、铸体薄片和压汞数据分析发现,不同成岩相储层孔隙结构的差异导致了岩电关系的复杂性.不同成岩相储层表现出不同的岩电特征,岩心孔隙度与地层因素之间的关系并不遵从经典的阿尔奇定律.为提高低渗透率砂岩储层含水饱和度计算精度,建立与成岩相储层孔隙结构特征相匹配的岩电参数及胶结指数m值计算模型.根据成岩相测井识别结果,可获得储层段连续的岩电参数.该方法在2口低渗透率砂岩密闭取心井中进行应用和验证,含水饱和度计算精度提高约10%,与岩心分析结果更加吻合.  相似文献   

10.
讨论砂岩和灰岩岩心电阻率、电容率参数与岩石含水饱和度之间的关系。对砂岩和灰岩岩心样品进行高压(30 MPa)真空(-0.092 MPa)驱替饱和,使岩心样品饱和某一矿化度的盐溶液,测量这些岩心电阻率和电容率参数。对所测量的数据分析发现,在4Hz~5 MHz的频率范围内,每种岩性电阻率和电容率均随频率的增加而减小,但在同等条件下,电容率随频率的变化幅度更明显,其频散度更大。不同的频率段,岩心电阻率和电容率参数频散度不同,低频段(小于100kHz)频散度大,在高频段(大于100kHz)频散度小。根据岩性电阻率和电容率参数,建立了一种新型的岩石含水饱和度的计算方法。相比于传统岩电实验,利用该方法计算饱和度不需要测量岩石的胶结指数、饱和度增大系数、地层因数等Archie公式的相关参数。通过岩心的电容率可以直接计算岩石含水饱和度,可减少多个不同参数实验测量带来的误差。  相似文献   

11.
对二连地区27口井403块岩心岩电实验资料进行统计分析,发现胶结指数m与系数a具有很好的相关性,由此实现了单块岩心的胶结指数m和系数a的计算.分析了岩心胶结指数m的相关因素,得出胶结指数m与岩心孔隙度相关性较好且受流体矿化度影响的结论,实现了由测井资料计算胶结指数m,采用连续可变a、m值计算含油饱和度.该方法适应二连地区复杂砂岩岩石孔隙结构变化快的特性,有利于提高含油饱和度计算精度.  相似文献   

12.
浅析Archie参数m和n值的实验室测量误差   总被引:1,自引:0,他引:1  
田中元  丁荣辉 《测井技术》2004,28(3):265-268
提出对<测井技术>2003年第4期发表的"岩电实验过程中误差产生的原因及校正方法研究"一文的不同观点.Archie参数孔隙度指数(m)和饱和度指数(n)值的实验结果直接影响到含水饱和度的计算结果.分析结果表明,m和n值的测量误差主要来源于实验条件和统计模型;m值测量误差对计算的含水饱和度影响比n值测量误差的影响大.在实验室进行岩心实验时,应特别注意实验条件和统计模型2个因素,以尽量减小实验误差.  相似文献   

13.
唐红瑛 《测井技术》2006,30(4):294-297
在沾车凹陷复杂的岩性条件下,按油田不同层位进行岩电资料统计分析,并建立其饱和度解释模型是合适的.沾车凹陷孔隙度与地层因素、含水饱和度与电阻增大率的相关性均良好,这种良好的相关性将会使该地区的饱和度解释模型更具有代表性,因此划分出的油水层系更加精确,其胶结指数与岩样的其它岩性参数基本上相关良好,说明它在一定程度上反映了岩样的孔隙结构特性;其饱和度指数与岩样的其它岩性参数基本上不相关,说明它主要反映了饱和度大小及其分布特征的影响,其它影响因素处于次要地位.胶结指数与均质系数基本上是相关的,因此,胶结指数m可以作为描述岩石孔隙结构均质程度的一个新的特征参数.  相似文献   

14.
低孔隙度低渗透率岩心欠饱和对岩电实验参数的影响分析   总被引:1,自引:0,他引:1  
岩电实验首先要求用地层水完全饱和岩心.但对于低孔隙度低渗透率岩心,由于受实验周期的限制,岩心往往不能达到完全饱和.岩心欠饱和状态下对地层因素F和电阻增大率I的测量只能是在一定条件下的近似,存在一定误差,误差的绝对值虽然较小,但相对误差却往往较大.通过理论推导、实验验证,说明了岩心欠饱和因素对岩电实验结果中胶结指数m和饱和度指数n的影响,并给出了校正方法.在岩心不能达到完全饱和的情况下,按照正常操作程序实验,对饱和度指数n会产生影响,通常使n值降低,必须增加1个校正值;在岩心无法完全饱和的情况下,按照正常操作程序实验,会对胶结指数m产生明显的影响,且使m值增大,这种影响可以通过引入1个校正量加以校正.  相似文献   

15.
刘向君  刘洪  杨超 《石油学报》2011,32(1):131-134
储层含油气饱和度是储量评价的基础。在以Archie公式为核心的储层含油气饱和度评价方法中,岩电参数是Archie公式应用的基础。通过开展岩电参数研究实验,对利用风干法和自吸增水法建立碳酸盐岩岩心含水饱和度进行了对比。研究结果表明,由于碳酸盐岩岩心孔隙结构、润湿性复杂,依靠自吸水方式,含水饱和度高于一定值后岩心将表现出不再自吸水的现象。自吸增水法所能够达到的最高含水饱和度一般都低于50%,相对于自吸增水建立的岩心低含水饱和度时的电阻率,被模拟地层水100%饱和时的岩心电阻率Ro 普遍偏高,100%饱和状态下的岩心电阻率大都偏离了低饱和度数据点拟合线的延长线。风干法和自吸增水法获得的指数n和系数b数值上具有明显区别,但变化趋势一致,且两种饱和度建立方法获得的指数n都与孔隙度具有较高的相关性,且都随孔隙度增大而降低。对基质孔隙度、渗透率都差的碳酸盐岩储层岩石的岩电研究中,含水饱和度建立十分困难。根据碳酸盐岩气藏成藏后气水运移规律及气藏内部气水平衡过程,风干法所获得的岩电实验关系更符合碳酸盐岩气藏含气饱和度评价的需要。  相似文献   

16.
利用Archie公式计算储层含水饱和度时,岩性系数a和胶结指数m通常取区域某一固定值,但在致密砂岩储层实际应用中发现,地层因素和孔隙度的关系与典型的Archie公式特征不符,其相关性较差,通过不同的回归处理方法得到的a和m值有时相差较大。利用xx油田致密砂岩储层14口井130块岩心岩电实验资料进行统计分析:不同井区确定的岩性系数a和胶结指数m具有很好的相关性,存在明显的幂函数关系,且a和m值变化范围很大,呈现高a低m的特征,强制将a近似为1与实际不符;地层因素和孔隙度在lg( F)-lg(Ф)坐标系下,以三次函数关系拟合可以将整套实验数据统一起来,即m与lg(Ф)存在一元二次函数关系。通过对胶结指数m的机理分析,引入导电效率,采用数值模拟方法推导出了m的计算公式。通过对比分析,采用变a和变m计算的地层因素与岩电实验测试结果符合程度更高,有利于提高含油饱和度计算精度。  相似文献   

17.
根据阿尔奇公式计算含水饱和度,必须确定胶结指数和饱和度指数,这些参数通常根据岩心栓的电法测量值获得(如:根据地层因素和电阻率指数),然而,测量数据相当大的离散导致诸多不确定性。  相似文献   

18.
由于砂砾岩储层岩性复杂、物性差、孔隙结构复杂,导致储层含油饱和度定量计算难度大.从研究区砂砾岩储层物性、岩电、粒度、核磁共振等岩心测试数据入手,系统分析了砂砾岩储层岩石物理性质参数对岩电参数的影响,提出基于孔隙结构的砂砾岩储层岩电参数方法以确定玛湖地区三叠系百口泉组复杂砂砾岩储层饱和度模型.提取岩心测试的核磁共振T2谱特征参数,根据这些特征参数与岩电参数m、n的关系,建立基于孔隙结构的m和n的计算模型,把求取的岩电参数模型应用到饱和度计算中.该方法利用核磁共振测井资料实现了连续深度上的岩电参数m和n的精确计算,进而求得含油饱和度,并在现场实际应用中取得了显著效果.  相似文献   

19.
以白云岩储集层物性、岩电、CT扫描、核磁共振和薄片分析资料为基础,提出了一种确定储集层临界含水孔隙度、临界含水饱和度、临界导通指数等连通导电模型参数的方法.将计算得到的临界含水饱和度与T2截止值、渗透率、CT扫描和薄片分析结果进行对比,并将临界导通指数与胶结指数进行对比,分析了临界含水饱和度、临界含水孔隙度及临界导通指...  相似文献   

20.
含水饱和度指数n值计算方法探讨   总被引:2,自引:1,他引:1  
研究了不同样品在不同实验条件下的含水饱和度指数n值的计算方法.根据岩电实验中含水饱和度Sw与电阻增大率I交会曲线的特征,分析了样品孔隙结构及含水饱和度对含水饱和度指数n值的影响,使用了I-Sw分段回归法、n-Sw相关分析法以更精确地计算样品的含水饱和度指数n值.实验分析了不同的油藏参数与含水饱和度指数n值的关系,认为储层性质和流体性质是影响含水饱和度指数n值的关键参数,对实际油藏应通过多因素拟合的方法求解含水饱和度指数n值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号