首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ˮ����̬�����ˮ���������   总被引:9,自引:1,他引:8  
针对自然界中天然气水合物在海底和大陆永冻区形成条件不同,通过实验研究了水的不同形态和甲烷气反应生成甲烷水合物的过程。实验结果显示甲烷与冰粉反应要比甲烷与水反应容易得多,一方面得益于反应物间接触面积的增大,另一方面受温度变化的影响。使用0.7~0.8 K/h的温度驱动条件,冰粉与甲烷气体迅速反应,证明甲烷气能够直接与固体冰反应生成水合物,成核诱导期较短。同时文章指出在甲烷和冰反应时,存在两个反应高峰期,这两个高峰期中间是气体分子向固体内部扩散的过程。而水和甲烷气体反应时,扩散过程占主要部分,诱导期漫长。冰和水分别与甲烷反应的对比可以用来考虑评估天然气水合物在不同地质区域的储量和预测其分布状况。  相似文献   

2.
为研究小梯度温度范围内甲烷水合物在石英砂介质中生成过程的热力学和动力学特性,开展了定容条件下273.75K、273.85K、273.95K3种恒温水浴体系的甲烷水合物生成实验。研究结果表明:(1)反应温度越低,釜内甲烷水合物生成过程中反应热释放越快,相比于273.95K的反应体系,273.75K体系的反应釜内首次温度上升值为0.9K,约为273.95K体系的6倍;(2)随反应温度的增加,水合物的生成量和转化率逐渐下降;(3)反应温度越低,甲烷水合过程的前期反应速率越大,气液界面和石英砂表面生成的水合物薄膜阻碍了甲烷气与水之间的进一步传递,使得甲烷的单位消耗速率随反应的进行呈阶梯型递减。通过石英砂介质内甲烷水合物的生成实验,以期为工业上气体水合物的合成、储存与运输提供借鉴。  相似文献   

3.
冰点以下不同粒径冰颗粒形成甲烷水合物的实验   总被引:1,自引:1,他引:0  
冰点以下甲烷水合物形成动力学研究一直是天然气水合物实验室研究的重点。为此,采用6种不同粒径的冰颗粒开展了甲烷水合物的形成实验研究,研究冰点以下甲烷水合物形成过程中,诱导初始压力、补充压力、诱导生成反应时间的变化、冰颗粒的粒径等因素对甲烷水合物形成的影响。实验结果表明:在相同的实验条件下,初始诱导压力越大越容易形成甲烷水合物;冰颗粒粒径对甲烷水合物形成有较大影响,粒径较小的冰颗粒越容易形成甲烷水合物,形成反应的时间也较快。  相似文献   

4.
目前有关天然气水合物(以下简称水合物)的研究主要集中在物理化学性质考察和开采(分解)方法探索方面。在进行后者的研究过程中,地层渗流过程的物理模拟至关重要,但目前借助于石油开采研究中广泛应用的填砂管等多孔介质对水合物进行动态过程的研究却鲜有报道。为此,利用河砂填砂管在岩心驱替装置上进行了甲烷水合物生成过程的物理模拟,考察了地层温度、甲烷压力及地层模型性质参数等对水合物生成过程的影响。结果表明:(1)利用冰融水作为地层模型的束缚水可显著提升甲烷水合物的生成速率;(2)多孔介质条件下过程驱动力(即实验压力或温度偏离水合物相平衡对应值的程度)对甲烷水合物的生成起着决定性作用;(3)当甲烷压力高于水合物相平衡压力1.4倍以上,或者实验温度低于相平衡温度3℃以下时,甲烷水合物生成诱导期几乎不随温压条件的变化而变化;(4)渗透率、含水饱和度、润湿性等参数对实验中甲烷水合物的生成率不构成明显影响。  相似文献   

5.
在小型水合物反应装置上研究了纯水、四丁基溴化铵(TBAB)、四氢呋喃(THF)三种不同水合体系对二氧化碳水合物生成过程的诱导时间、气体消耗速率及反应最终压力等特性的影响。结果表明,设定温度在0℃~3℃范围内时四丁基溴化铵体系中生成水合物的诱导时间最长,受温度影响最大,而水合反应气体消耗速率最大;四氢呋喃体系中生成水合物的诱导时间最短,受温度影响最小,而水合反应气体消耗速率最小;四丁基溴化铵、四氢呋喃体系反应最终压力略高于纯水体系。较高温度范围内THF体系对水合物生成特性的影响明显优于其他两种。  相似文献   

6.
二氧化碳水合物的形成对二氧化碳地下固态封存和二氧化碳置换开采甲烷水合物有着重要的指导意义。在设计的水合物实验装置上,研究了不同初始压力、不同水合物形成温度和不同石英砂粒径条件下对二氧化碳水合物的诱导时间、生成速度等特性的影响。结果表明,水合物的生成量随着初始实验压力的增大和生成温度的降低而增大,基本不受石英砂粒径的影响;水合物平均生成速度随着初始实验压力降低、水合物生成温度降低和石英砂粒径增大而变慢;诱导时间随着初始压力的降低和石英砂粒径的增加而明显变长;若初始实验压力较高,导致二氧化碳在生成水合物前发生液化现象,则水合物生成诱导时间不明显,同时水合物平均生成速度也较慢。  相似文献   

7.
����ˮ�������ȶ��Ե��о�   总被引:1,自引:0,他引:1  
要利用天然气水合物实现对天然气的工业储运,就需要提高水合物的储气量并解决水合物的解析速度问题。为此,研究了在阴离子表面活性剂十二烷基硫酸钠(SDS)体系中,甲烷水合物在冰点以下的常压分解规律。结果表明,随着温度的降低,水合物的分解受到自我保存性质的影响,分解速度减慢。在温度范围为269.1~266.1 K之间,甲烷水合物的分解速度存在突变;利用外推法计算260.1 K时甲烷水合物完全分解需要21 d,说明水合物的自我保存性质对气体水合物储运技术具有重要意义。实验也发现SDS体系中生成的甲烷水合物颗粒尺寸较小,颗粒堆积结构近似多孔介质,对甲烷气体有一定吸附作用。  相似文献   

8.
研究了高压鼓泡装置中进气速率、压力、温度及滤网目数对纯水体系甲烷水合物的生成动力学和形态的影响。实验结果表明,提高进气速率和压力、降低温度均可提高甲烷水合物的生成速率,但随着进气速率的提高,甲烷气体转化率减小;增加滤网可显著提高水合物生成速率和甲烷气体转化率,最优的滤网目数为200目。甲烷水合物极易在气液界面生成,形成水合物泡。进气速率对水合物形态有显著影响,进气速率较低时水合物泡保持原有形态不易被破坏,不断聚集,水合物较疏松;进气速率较高时,气体溢出,水合物易变形破裂,不断堆积,水合物较致密。压力和温度对水合物形态的影响较小;增加滤网可显著减小气泡体积,形成较多的水合物泡。  相似文献   

9.
深水油气钻井和开发过程中极易生成天然气水合物,对深水钻井和油气集输造成严重影响。某深水油田的伴生气组分复杂,现有水合物生成预测模型计算误差较大。为准确预测该油田伴生气的水合物生成风险,本文利用天然气水合物微观实验装置,模拟油田多组分气体,进行了水合物生成条件测定,并探索了乙二醇对多组分气体水合物生成的影响。研究表明,在温度低于15℃时,某深水油田的伴生气的相平衡条件低于甲烷和二氧化碳,高于乙烷和丙烷;在温度高于15℃时,其相平衡条件低于甲烷、乙烷和二氧化碳。这表明,与甲烷气体相比,该多组分气体由于乙烷、丙烷等的存在,更容易生成水合物,且水合物晶体呈针状生长,其针状结构会迅速发展成体型结构,极易造成管线堵塞。在集输管线流体平均压力为5 MPa时,40%的乙二醇溶液可使模拟气体的水合物相平衡温度降低5.3℃,为该油田水下油气集输过程中的水合物防治工作提供了理论依据。图10参19  相似文献   

10.
天然气水合物是一种由气体(主要是甲烷)和水组成的冰状固态化合物。通过对溶液中水合物的生成实验和冰转化为水合物的机理进行总结与分析,得出影响冰转化为水合物的因素。提出用含气率作为评价反应进行程度的指标。针对冰转化为水合物的影响因素,采用正交实验的方法对实验方案进行了设计,建立了正交实验表并进行了实验。实验结果表明,压力越高越有利于水合物的生成,但实验温度和搅拌速率则存在着一个促进水合物生成的最佳值。  相似文献   

11.
储气罐中天然气水合物生成的温度特性研究   总被引:1,自引:0,他引:1  
为了研究储气罐中天然气水合物生成的温度变化特征,利用自制的天然气水合物三维模拟装置从甲烷气体和水溶液中成功生成了甲烷水合物,通过温度-压力变化对甲烷水合物在多孔介质中的整个生成过程进行了研究。实验结果表明,注气从垂直中心井注入,导致中心区域温度升高,并向四周蔓延,水合物从中心井往外聚集。由于多孔介质的毛细管作用,甲烷水合物在多孔介质中产生爬壁效应,外侧水合物生成较多,在多孔介质中呈不均匀分布。  相似文献   

12.
王东 《天然气化工》2023,(2):149-154
水合物较低的生成动力学速率和较高的相平衡条件是困扰水合物技术工业化应用的主要原因。研究了热力学促进剂(四丁基溴化铵(TBAB))和动力学促进剂(十二烷基硫酸钠(SDS)、十二烷基苯磺酸钠(SDBS))联用时对甲烷水合物生成热力学和动力学的促进行为,重点考察了3种促进剂质量比、联用型水合物促进剂质量分数和初始实验温度等因素对联用型水合物促进剂性能的影响。结果表明,将SDS、SDBS和TBAB以质量比2:1:1联用时,对甲烷水合物生成热力学和动力学均具有良好的促进作用,可有效降低甲烷水合物相平衡条件;适宜的联用型水合物促进剂质量分数为0.05%~0.30%,其中质量分数为0.10%时,诱导时间为75 s;降低初始实验温度可增加甲烷水合物生成的反应推动力,有利于快速成核与生长,当初始实验温度为276.15 K时,储气量高达170 mL/mL(1 mL水储存170 mL气体)。此外,联用型水合物促进剂的核心组分为离子型表面活性剂,在机械搅拌作用下体系会产生大量气泡,加快气液传质速率,因此甲烷水合物颗粒最初在界面气泡处出现,随后呈现气相和液相双向生长趋势,进而快速充满反应釜,有利于对甲烷等气体小...  相似文献   

13.
甲烷水合物在石英砂中生成过程研究   总被引:2,自引:2,他引:0  
在初始压力Pin=13.0MPa±0.2MPa,过冷度Twup=14.2K±0.1K条件下,研究了7种不同粒径石英砂中甲烷水合物生成诱导期、生成时间以及孔隙水“记忆效应”的影响。结果显示,石英砂中诱导期较纯水中明显缩短;石英砂粒径减小,诱导期变长。孔隙水“记忆效应”极大缩短甲烷水合物诱导期,并表现出随机性。石英砂中甲烷水合物生成时间与石英砂粒径、孔隙水“记忆效应”的关系与诱导期类似。分析认为石英砂颗粒提供更多成核中心,而孔隙减小阻碍了甲烷的扩散。  相似文献   

14.
基于HYSYS的C3/MRC天然气液化流程影响因素分析   总被引:1,自引:1,他引:0  
基于悬浮气泡表面生成气体水合物的高压可视化实验装置,分析探讨了系统压力、温度、水质因素对天然气水合物的成核和生长规律的影响。研究结果表明,随着反应温度的降低和反应压力的增大,诱导时间和生长时间呈现出缩减的趋势,气泡表面水合物逐渐由粗糙变得光滑;蒸馏水形成的水合物比较规则、密实,而纯净水形成的水合物略显凌乱、松散;相同实验条件下,蒸馏水生成水合物的诱导时间和生长时间较短。  相似文献   

15.
张鹏  吴青柏  蒋观利 《天然气工业》2010,30(10):109-112
目前,对沉积物中天然气水合物形成与分解性质的研究主要是在单一介质中进行,但自然界中的天然气水合物主要赋存于混合介质沉积物中。因此,有必要考察不同介质类型对天然气水合物形成的影响。为此,将粗砂、细砂、粉土3种介质按不同方法混合,搭配出6种混合型介质,并采用降温法在其内生成甲烷水合物,研究介质类型对甲烷水合物形成性质的影响及在降温过程中不同介质消耗甲烷气体的特点,为研究介质内水合物形成机制提供理论基础。实验装置由供气、反应和数据采集3个系统组成。结果表明:①不同单一介质对水分的吸持力差别很大,介质混合后水分在其内的分布状态及水分子在介质表面的吸附排列存在较大差异,从而使不同混合型介质内甲烷水合物的最终生成形态不同;②介质类型不仅会影响其内甲烷水合物的形成过程,而且会影响水合物的含气率;③不同介质内甲烷水合物生长过程所处的时间阶段不同。  相似文献   

16.
介观孔隙中天然气水合物生成过程模拟   总被引:1,自引:0,他引:1  
目前,对沉积物中天然气水合物(以下简称水合物)的生成过程研究大部分集中在实验研究以及水合物生成的本征动力学方面,在孔隙尺度方面缺乏对水合物生成过程的全方位考虑。为此,从介观角度出发,结合实验模拟结果,研究了沉积物孔隙中甲烷及二氧化碳水合物的生成过程。首先对甲烷水合物和二氧化碳水合物在沉积物中的生成过程进行了实验模拟(沉积物样品选用南海浅表层沉积物,粒径为60~100 目),结果表明:水合物在沉积物孔隙中的生成过程比较平缓,体系温度基本没有大的变化;在初始阶段水合物生成量比较大,随着反应的进行,水合物生成速率逐渐减小。在实验的基础上,以孔隙水中溶解气体的浓度为变量,从介观角度数值模拟了甲烷水合物和二氧化碳水合物在沉积物中的生成过程,并以单个沉积物孔隙空间的水合物生成表征沉积物体系内水合物的生成特性。结论认为:沉积物颗粒堆积孔隙内部的水合物先在沉积物壁面处生成,然后水合物层逐渐加厚,向孔隙中心生长,水合物呈层状生成,最后填满整个沉积物颗粒孔隙;伴随着水合物的生成,沉积物体系孔隙率降低。通过模拟计算得到的水合物转化率与实验结果进行对比,其误差范围介于3%~7%,表明该模型具有较强的可靠性。  相似文献   

17.
搅拌对甲烷水合物生成的影响   总被引:4,自引:0,他引:4  
通过有无搅拌条件下甲烷水合物生成过程中的反应速率和液相温度的变化的对比,表明采用间歇搅拌的方式可以有效缩短反应诱导时间,提高反应速率,同时研究了不同搅拌时间和搅拌速率对甲烷水合物生成的影响。在压力5.0MPa、温度274.35K、搅拌速率400r/min、搅拌时间30min,可以获得159V/V以上的储气效果,而且可以缩短反应的操作时间。  相似文献   

18.
海泥石英砂沉积物中甲烷水合物的生成   总被引:5,自引:0,他引:5  
介绍了多孔介质中天然气水合物实验装置。在定压7 0MPa、恒温2 0℃条件下,利用甲烷气(99 9%)在海泥石英砂沉积物中(配比为海泥、石英砂各100g,蒸馏水50ml)生成水合物。其生成的诱导期较相同条件下甲烷气/纯水体系中水合物生成的诱导期缩短1/3(约40h),对其形成过程进行了初步归纳,发现并解释了水合物在沉积物中分层聚集的现象。  相似文献   

19.
孔板气泡法缩短天然气水合物形成诱导期   总被引:1,自引:0,他引:1  
为缩短天然气水合物形成诱导期,基于气液两相流原理和天然气水合物形成条件,提出从高压反应釜底部进气,利用孔板鼓泡来增大气液接触面积,增强气体对液体的扰动,从而缩短天然气水合物形成诱导期的动态方法。据此,建立带有机玻璃视窗的高压反应釜实验系统,在浓度为280 ppm十二烷基硫酸钠(SDS)促进剂水溶液中进行天然气水合物生成动态实验(反应釜底部进气)和静态实验(反应釜顶部进气)。结果表明,使用此法,一定压力(P=4.15 MPa)和温度(T=274.05 K)下,相比于静态实验(P=4.30 MPa,T=273.95 K),天然气水合物形成诱导期可缩短约2/3,尽管其它条件相同时,理论上后者的温度和压力更有利于天然气水合物的形成;此外,实验结果还表明,一定反应条件下,天然气水合物形成诱导期受通气状况的影响,实验中,通过控制气流速率,一方面可控制气泡直径(气泡直径越小,气液接触面积越大);另一方面可延长通气时间(增加了气体对液体的持续扰动)。这二者都有助于缩短天然气水合物形成诱导期。  相似文献   

20.
降温速率和粒径对砂土中甲烷水合物形成过程影响研究   总被引:2,自引:0,他引:2  
为研究降温速率和多孔介质粒径对天然气水合物形成过程的影响,在2种不同粒径的砂土中开展了甲烷水合物的形成实验研究。5个不同的降温速率被应用到2种粒径砂土中甲烷水合物的形成实验。实验结果表明,降温速率对砂土中甲烷水合物的成核时间有明显的影响。降温速率越快,甲烷水合物所需的成核时间就越短。同时,降温速率越慢,甲烷气体形成甲烷水合物的气体转化率就越高。不同的降温速率也影响形成实验中降温阶段和恒温阶段的甲烷水合物形成情况。在较低的降温速率下,恒温阶段的气体转化率相对较少。不同的多孔介质对甲烷水合物的形成过程也具有明显的影响。相对来说,在相同条件下,甲烷水合物在粗砂土中比在细砂土中更容易形成;在粗砂土中形成甲烷水合物,其气体转化率比在细砂土中形成的甲烷水合物更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号