首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
石蜡基基础油A和环烷基基础油B组成差别很大,将它们按不同比例调合得到组成不同的基础油,定性考察了润滑油基础油组成对黏度指数、浊点、倾点、低温动力黏度以及溶解制冷剂能力的影响,结果表明:随饱和烃含量的增大,浊点呈近正比例的升高;环烷基油和石蜡基油调合且两组分含量均不是很低时,可以使调合油倾点低于两单组分各自的倾点;基础油中重组分含量越高,密度越大,低温动力黏度也越大,且低温动力黏度与密度成正相关关系;基础油中多环烷烃和多环芳烃等非理想组分含量越低,低温动力黏度就越小;随着芳香烃含量的升高,油样的两相分离温度降低,即油样溶解制冷剂的能力变好。  相似文献   

2.
实验室采用ASTM D1903方法考察了烃组成、添加剂及精制深度对变压器油热膨胀系数的影响。研究结果表明变压器油热膨胀系数主要由其基础油烃组成决定,现有生产工艺精制深度、添加剂对其影响不大。不同基属变压器油,热膨胀系数随链烷烃含量增大而增大;同一基属变压器油,热膨胀系数相近,与芳烃含量无关。  相似文献   

3.
采用流动型比热容测量法考察了温度、黏度、精制深度、烃组成等对变压器油比热容的影响。结果表明:依据ASTM D2766-1995设计的流动型比热计测量法相比ASTM E1269-2005法,重复性更好,误差在±2%以内;在-20~100 ℃范围内,变压器油比热容随温度升高呈近似线性增大的趋势;在传统溶剂精制过程中,变压器油比热容受精制深度的影响不大;黏度相近时,芳碳含量对变压器油的比热容影响不大;黏度相近时,变压器油比热容随链烷碳含量的增大而增大,且链烷碳含量较大的变压器油比热容随温度升高而增大的程度略小,100 ℃时不同链烷碳含量变压器油的比热容非常接近;对于同一油源、同一工艺得到的不同馏程的基础油,黏度增加3倍时,比热容只增大2.6%,其比热容随黏度的增加呈略增大趋势。  相似文献   

4.
将委内瑞拉脱水油样与不同的正构烷烃配制成混合液,然后对其进行抽提得到不同的沥青质和脱沥青油,并制备了重组油样。考查了沥青质含量和温度对油样黏度的影响。实验结果表明,Arrhenius关系式能较准确地描述重质油黏度与温度之间的定量关系。沥青质在重质油高黏度中起着关键作用,当温度低于35℃时,重组油样的黏度随沥青质含量的增加而急剧增大。当温度高于40℃时,随沥青质含量的增加,重组油样的黏度几乎不再增加。利用重组油样黏度和沥青质含量之间的关联式lnlnlnμ=a+b_1lnw+b_2(lnw)~2+b_3(lnw)~3能较准确地描述重组油样的动力黏度和沥青质含量之间的关系。  相似文献   

5.
通过对"同一油源不同标号沥青(克拉玛依沥青30号、50号、70号、90号、110号)、不同油源同一标号沥青(克拉玛依沥青、临河沥青、西太沥青90号)"进行原样、短期老化、长期老化后的软化点、布氏黏度及MSCR试验,评价沥青油源、标号及老化程度对沥青高温性能评价指标的影响。结果表明:三种试验手段所得沥青高温性能一致;沥青油源及标号对其软化点影响显著;老化程度、标号及油源均对MSCR试验指标影响显著,但布氏黏度测试结果无显著差异。推荐采用MSCR试验评价沥青高温性能,从而有效区分和评价沥青油源、标号及老化程度对其高温性能的影响。  相似文献   

6.
酯类油是被广泛应用的航空润滑油基础油,以50-1-4Ф航空润滑油为试验对象,用高温反应釜模拟航空润滑油高温氧化过程,以铜片和铁片作为催化剂,通过分析试验前后油样黏度、酸值、倾点变化,研究金属对酯类航空润滑油高温氧化作用的影响。结果表明,金属Fe和Cu具有明显的催化作用,使得试验油样黏度、酸值、倾点变化更加剧烈;铁片对酯类航空润滑油的催化作用强于铜片,且铁片、铜片共存时催化效果更加强烈;增加金属片的数量,对试验油样的黏度、酸值、倾点影响不大。  相似文献   

7.
对中红外光谱测定发动机油运动黏度的方法进行了研究。收集了81个发动机油样,并随机抽取其中的61个油样作为建模集,剩余的20个油样作为预测集。筛选出发动机油运动黏度的特征波段1758.8 cm~(-1)~1305.6 cm~(-1)。用建模集建立了特征波段的主成分分析-偏最小二乘法数学模型。该模型预测集的相关系数和预测误差均方根分别为0.97279和0.43433,满足中红外光谱测定发动机油运动黏度的要求。特征波段的主成分分析-偏最小二乘法数学模型可用于测定发动机油的运动黏度。  相似文献   

8.
深水钻井条件下合成基钻井液流变性   总被引:10,自引:2,他引:8  
目前合成基钻井液体系在深水钻井中应用比较广泛,其低温流动性也成为深水钻井中较受关注的问题。通过测定线性α-烯烃合成基钻井液在不同组成时的黏度-温度特性,研究了乳化剂种类、有机土加量、油水比以及钻井液密度等对合成基钻井液低温流动性影响,探讨了基油种类和黏度对油包水钻井液的黏度-温度特性影响。实验结果表明,乳化剂种类是影响线性α-烯烃合成基钻井液低温流动性的最主要因素,其次是有机土加量和油水比,而加重材料对合成基钻井液低温增稠程度影响较小;基油低温黏度是影响深水合成基钻井液体系黏度的重要因素。线性α-烯烃合成基钻井液较矿物油和气制油基钻井液具有更优的低温流动性,可以应用于深水钻井作业。  相似文献   

9.
为探究注过热蒸汽对驱油效果的改善情况,通过室内单管驱替实验,研究蒸汽质量、注汽速率对采收率的影响,并从黏度、渗透率、热膨胀系数和蒸馏率4个方面对驱油机理进行分析。结果表明,当注汽速率为1.8 mL/min时,最优注入蒸汽质量为注过热15℃蒸汽,最终采收率可达77.8%;按照最优注入蒸汽质量注汽,最优注汽速率为1.3 mL/min,最终采收率可达79.6%;过热蒸汽驱替后,50℃原油黏度减小40.7%;实验用油平均热膨胀系数为0.000 653℃~(-1),原油温度增加300℃,体积增加19.6%;过热蒸汽促使蒙脱石和高岭石向绿泥石或伊利石发生转化,物理冲刷会使孔隙通道增大,改善储集层渗流状况。  相似文献   

10.
为了研究油基钻井液漏斗黏度与表观黏度之间存在的联系,从马氏漏斗黏度计的结构出发,在水基钻井液研究成果的基础上,分析了油基钻井液在马氏漏斗黏度计中的流动规律,研究了利用油基钻井液马氏漏斗黏度预测表观黏度的可行性,推导了流体漏斗黏度计算公式,建立了油基钻井液马氏漏斗黏度与表观黏度函数之间的数学模型,并对该模型分别进行了室内试验和现场试验的验证。试验结果显示,室内和现场计算的表观黏度与实测表观黏度的最大相对误差分别为6.8%和8.2%,均在合理范围内;现场试验中,油水比从70:30增大到91:9,预测结果没有受到影响。研究结果表明,基于马氏漏斗黏度的表观黏度预测模型能够较准确地估测油基钻井液的表观黏度,钻井现场可以利用油基钻井液的马氏漏斗黏度估算其表观黏度,这为现场预测油基钻井液的表观黏度提供了方便。   相似文献   

11.
刘英  潘草原 《润滑油》2010,25(4):56-60
加氢基础油性质主要受原料性质与润滑油加氢装置操作条件的影响,文章重点讨论了在其他操作条件相同或近似的情况下,加氢裂化温度对同种原料与不同种原料所生产基础油产品粘度指数、倾点、旋转氧弹等主要性质的影响,并对不同裂化温度下生产的基础油产品进行结构分析,从而进一步对裂化温度影响产品性质的主要原因进行了解释。  相似文献   

12.
伊朗原油生产润滑油基础油的工业试验   总被引:2,自引:0,他引:2  
进行了伊朗原油减二、减三线、减四线及脱沥青油采用糠醛精制、酮苯脱蜡和白土精制传统加工工艺生产润滑油基础油的工业放大试验。结果表明,伊朗减二线及脱沥青油基础的粘度指数大于90,与HV1150及HV1150BS基础油的具体指标有一定差距,其它质量指标分别达到HV1150和HV1150BS基础油的技术要求;伊朗减三线、减四线基础油的粘度指数小于90,其它质量指标分别达到HV1400和HV1650基础油的  相似文献   

13.
杨道胜  侯泽民 《润滑油》2013,28(2):55-64
黏度指数改进剂改善油品黏度指数的机理,通常认为是由于高聚物加入基础油中改善了黏温性能从而改善了黏度指数。通过研究增稠能力的升降随温度的变化以及高聚物与基础油的Hildbrand溶度参数差值的数据,发现广泛使用的OCP、Shellvis和PIB等高聚物在大幅度提高油品黏度指数的同时,反而使油品黏温性能变差,PMA只有辛酯有所改善而其他长链酯均不改善,浓度升高黏度指数也升高而黏温性能不变,甚至某些复合剂也提高黏度指数。研究证明了Andrede公式(η=AeQ^Q/RT)中的黏温活化能Q可以很好地表征基础油和稠化油的黏温性能,使用Q定量地分析了ASTMD2270中黏度指数和黏温性能的关系,在同一黏度级别的中性油中,黏度指数很好地代表了黏温性能;相同黏度指数的轻馏分基础油的黏温性能比重馏分好很多。只要加入高聚物,无论此高聚物是否改善了基础油的黏温性能,稠化轻的基础油成为较重的多级油就提高了黏度指数,就具有比相应的重单级油好很多的黏温性能。  相似文献   

14.
李剑新 《润滑油》2000,15(2):20-23
克拉玛依油田九区稠油是典型的环烷原油,采用加氢酸、糠醛精制、加氢处理等精制工艺能生产出倾点低、粘度大、安定性好的LVI润滑基础油。本文就环烷基润滑油馏分性质和各工艺对产品的加工特点进行论述,阐述环烷基原油加工润滑油基础油的工艺特性,对环烷基原油生产润滑油产品具有一定的指导意义。  相似文献   

15.
Transport properties of transformer oil are important parameters for electric equipment designing. In this work, thermal conductivity was measured from 253 K to 363 K by single transient hot-wire technique. And influence of transformer oil's thermal conductivity was investigated. It is found that the thermal conductivity decreases linearly with increasing temperature. When different oils are mixed together, the thermal conductivity shows additive property. For different oils with about the same viscosities, their thermal conductivities are directly related to alkane and aromatic content, while for oils with the same oil source, oil refinery process, similar carbon type, and different boiling range, the thermal conductivity increases with its viscosity.  相似文献   

16.
采用气相色谱法考察变压器油基础油在低热条件下油中溶解气体组分的变化情况。结果表明:变压器油基础油在真空脱气前后、不同芳烃含量和不同原油基属的情况下,油中溶解气体组分含量与温度、储存时间、油中溶解氧含量直接相关;未脱气的油中溶解气体组分含量随芳烃含量的增加而增加,但脱气后油中溶解气体组分含量与芳烃含量没有明显相关性,且与基属无关。  相似文献   

17.
Steam injection into heavy oils has been well characterized over the last 40 years, and while steam has been injected into light oils almost as long, the mechanisms and effectiveness of this process are much less understood. When this lack of understanding is coupled with the complexities of flow in low permeability fractured reservoirs, even less is known. This study examines thermal recovery in low permeability, fractured reservoirs using thermal compositional simulation. A diatomaceous reservoir provided input for the rock model. The oil phase is represented by three pseudo-components that characterize a relatively light crude oil. Both the areal and vertical recovery efficiencies are improved for steam injection compared to water injection. The incremental recovery depends on the distribution of permeability and is greatest for homogeneous distributions. In regard to recovery mechanisms, thermal expansion of the hydrocarbon fluids accounts for over half of the incremental recovery early in the steam drive; after roughly 0.4 pore volume of steam injection (cold water basis), the incremental recovery is split equally among thermal expansion, vaporization, and oil viscosity reduction. Late time behavior is dominated by vaporization as the distillate bank breaks through to the producer. As a consequence of steam injection three separate fluid banks form: a cold water bank, a combined hot water and distillate bank, and the steam front. Hence, displacement mechanisms are substantially different from the heavy-oil situation where oil viscosity reduction and, frequently, gravity drainage are dominant. Although the study uses a diatomite rock and fluid model, this work clearly extends to include all low permeability fractured reservoirs that have low primary and waterflood recoveries. For such reservoirs, significant additional recovery is obtained by implementing a steam drive.  相似文献   

18.
添加剂对脲基润滑脂极压抗磨性能的影响   总被引:1,自引:0,他引:1  
杨海宁  姚立丹 《润滑油》2008,23(4):33-36
选择同一类型不同粘度的基础油,相同种类和含量的稠化剂,制备脲基润滑脂,分别加入3%的含磷添加剂,比较了基础脂之间和加入添加剂后脲基润滑脂极压抗磨性能的变化,说明基础油的粘度对添加剂在润滑脂作用效果的影响。试验看出:基础油粘度对添加剂发挥极压抗磨性能有很大影响,适当提高基础油粘度,有助于提高润滑脂的极压抗磨性能;含磷剂是一种有效的极压抗磨添加剂,在不同粘度基础油制成的脲基润滑脂中,对抗磨性能均表现出增效的作用。  相似文献   

19.
Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthenic base oil was investigated by studying the low-temperature viscosity of tested oils. The viscosity of lube oils increased with an increasing content of high-viscosity paraffinic base oil in the oil mixture. And the low-temperature viscosity was less influenced when the content of paraffinic base oil in the mixture was insignificant. In order to reduce the cost for formulating lubricating oil, a small fraction of paraffinic base oil can be added into naphthenic base oil as far as the property of lubricating oil can meet the specification. According to the study on low-temperature viscosity of the oil mixed with paraffinic base oil and naphthenic base oil, a basic rule was worked out for the preparation of qualified lubricating oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号