首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
红河油田为超低渗裂缝性油藏,为改善水驱开发效果,开展了泡沫辅助空气驱提高采收率数值模拟研究。根据该油田105井区的地质油藏条件,建立三维地质模型,在历史拟合的基础上,对泡沫辅助空气驱参数进行了优化设计,并进行经济评价。研究结果表明,泡沫辅助空气驱最佳参数为:注入方式为空气、起泡液交替注入;空气、起泡液的注入速度均为15 m3/d;起泡液浓度为2 500 mg/L;段塞周期为30 d;气液比为3∶1。经济评价表明,采用泡沫辅助空气驱方案,其产出投入比在2∶1以上。该井区采用泡沫辅助空气驱技术可较好地改善注水开发效果,达到降水增油和提高原油采收率目的。  相似文献   

2.
通过开展岩心驱替实验,对超低渗油藏氮气泡沫驱合理气液比和段塞尺寸进行了优选研究,以确定合理交替周期。结果表明,气液比1∶5和5∶1时提采幅度最高,在现场应用中,根据流体资源情况,可以选择注入较长的水段塞、较短的注气段塞或者较长的注气段塞、较短的注液段塞;优选了最佳段塞尺寸为0.2 PV,即井间注入量达到1PV时的合理交替周期数为5个。  相似文献   

3.
针对鲁克沁稠油油藏泡沫驱开采存在的气锁、注入参数不合理等问题,通过物理模拟实验,对减氧空气泡沫驱注入参数进行了优化。研究表明:水驱突破时开展减氧空气泡沫驱,采出程度增幅最高,含水率明显下降;采用气液交替注入方式替代气液同注方式,可避免井筒内气液分离和腐蚀问题,且当减氧空气和发泡液的单次注入量为0.1倍孔隙体积时,驱替效果与气液同注效果相当。室内获得的最佳注入参数为:水驱含水率达70%时转泡沫驱,液和气交替注入,单次注入0.1倍孔隙体积,注入速率为0.3 mL/min。现场施工参数调整后,试验区日增油为42 t/d,含水率下降28个百分点,累计增油为1.4×104t,产水量降低2.65×104m3。现场试验证明,减氧空气泡沫驱优化方案切实可行,该成果为鲁克沁稠油规模开发提供了重要技术支持。  相似文献   

4.
针对超低渗透非均质油藏开发过程中单井产量低、含水上升快、水驱动用程度低的特点,提出进行空气泡沫驱油,对空气泡沫驱油的影响因素进行研究。采用室内实验方法研究了储层非均质性、气液比、泡沫注入体积、泡沫注入段塞组合以及注入时机对空气泡沫驱油效率的影响。结果表明,对于非均质储层,空气泡沫驱可以有效地动用低渗透储层中的剩余油,最优的注入气液比为1∶1,最优的注入体积为0.2PV,最优的段塞大小是0.05PV,最优的注入时机为含水率达80%以上时进行泡沫注入。研究结论对于非均质超低渗透油藏进行空气泡沫驱油具有借鉴和指导价值。  相似文献   

5.
为了探索低渗透油藏开展空气泡沫驱的最佳时机,优选该时机条件下的最佳注入参数,提高空气泡沫驱技术应用效果和效益,在甘谷驿空气泡沫驱试验区开展了相关实验研究,目的是选择开展空气泡沫驱的时机,明确影响空气泡沫驱效果的各种因素。研究结果表明,含水率达到60%~70%时进行空气泡沫驱效果最好;合理的注入压力范围为18~22 MPa,最佳气液比为3∶1,合理的泡沫液注入速度为8~10 m~3/d,泡沫液最佳质量分数为0.35%~0.5%,空气泡沫最佳注入总量为0.6 PV左右;小段塞、多轮次交替的注入方式可以充分发挥空气泡沫驱的驱油效果,有效延缓见气时间,最大程度提高水驱后采收率。  相似文献   

6.
延长东部油田为典型的超低渗透水平缝油藏,其注水开发过程中,油井水淹速度快,水驱采收率低的问题。为改善开发效果,基于典型低渗非均质油藏数值模型,开展了空气泡沫岩注采参数研究,采用单因素分析法研究了注采参数对空气泡沫驱开发效果的影响规律和影响程度。研究结果表明,气液交替的注入方式优于气液同注;含水率过低时,不宜注入空气泡沫;随着气液比、注入压力、起泡剂浓度、主段塞大小、前置段塞大小和注采速度的增加,空气泡沫驱阶段采出程度会有不同幅度的增加;在高渗层投产要优于在低渗层投产。该研究结果对超低渗透水平缝油藏空气泡沫驱有效开发具有重要的指导和借鉴作用。  相似文献   

7.
泡沫驱特有的高粘度及在油层孔隙介质中渗流时不停消泡与起泡特点,使其即具有聚合物改善流度比、提高波及效率的作用,也能够抗高温高盐.通过室内驱替实验和数值模拟技术,依托高温高盐稠油的鲁克沁油田地质情况,研究泡沫注入段塞对驱油效果的影响.结果表明空气泡沫驱最佳注入段塞为:以改善水驱为主的深部调驱段塞(0.15 PV)和以段塞驱油为主的大段塞(0.45 PV).泡沫段塞0.15 PV时,提高的采收率为8.59 %OOIP,吨起泡剂增油量187.47t/t,综合指数16.10;泡沫段塞0.45 PV时其提高的采收率为14.65%OOIP,吨起泡剂增油量106.60t/t,综合指数15.62.  相似文献   

8.
通过起泡剂评价,优选出质量浓度为0.5%的QP-2为目标油藏用起泡剂。泡沫驱用起泡体系最佳气液比为1:1,最佳注入量为0.8PV,最佳注入速度为0.5mL/min,最佳注入方式为交替注入。  相似文献   

9.
商琳琳  许建红 《油田化学》2019,36(3):489-493
致密油层物性差,孔喉半径小,油藏非均质性严重,水驱驱油效率低,注水开发效果差。针对这些问题,为提高大庆外围龙虎泡油田高台子致密油层的驱油效率,模拟油层条件开展了空气-泡沫液体系驱油实验。结果表明,高台子致密油层水驱驱油效率平均值为48.95%,水驱后继续空气-泡沫液交替驱替的驱油效率为79.63%,驱油效率提高26.92%;小段塞交替驱替的效果好于大段塞驱;气液比过高,突破时间变短,驱油效率较低;用空气-泡沫液段塞驱代替水驱也能达到较好的驱油效果。致密油层水驱后转空气泡沫驱可大幅提高驱油效率,通过空气-泡沫液段塞、周期、气液比等注入参数的优化进一步改善致密油层驱油效果。图6表4参10  相似文献   

10.
为进一步提高聚合物驱后特高含水开发后期油藏采收率,根据强化泡沫驱先导试验区的油藏特点及开发现状,利用CMG数值模拟软件,对双河油田强化泡沫驱的注入段塞大小、注入浓度、注入方式等参数进行了优化设计,并依此制定了开发方案。优化结果表明:强化泡沫体系为2 000 mg/L稳泡剂+0.3%发泡剂,合理气液比为1∶1,最佳注入量为0.5 PV,并且采用气液混注方式驱油效果最佳;预测矿场实施后,可提高采收率10%,对聚合物驱后油藏采用强化泡沫驱技术进一步提高采收率是可行的。  相似文献   

11.
鲁克沁三叠系稠油油藏采用常温水驱开发,由于注入水黏性指进,开发效果逐年变差,为提高油田整体开发效益,开展了深层稠油油藏泡沫驱提高采收率矿场试验。根据油藏条件筛选出耐高温耐高盐起泡剂,结合其他矿场试验优化了发泡气体选择与注入参数,并在YD203井区采用段塞交替注入方式实施减氧空气泡沫驱矿场试验。YD203井区内19口井4年内见效率达到89%,整体含水下降39.5%,累计增油超过2.0万t,预计提高油田采收率6.8%。该研究对进一步提高鲁克沁深层稠油油田采收率、实现油田可持续发展具有重要指导意义。  相似文献   

12.
针对常规氮气泡沫在地层消泡后难以再次起泡,严重制约泡沫驱效果的问题,开展室内实验,采用多因素评价方法,从发泡能力、再次起泡性能、耐盐、耐温耐压等方面优选出廉价高效的再生氮气泡沫驱油配方体系。在模拟油藏条件下,开展了一维岩心驱替实验,证实了再生泡沫的可行性,对比并优选出合理的注入参数:气液比为3∶1,注入速度为0.3~0.4 mL/min,气液同注。在新疆油田SN井区开展了2个井组的先导试验,累计注入0.43倍孔隙体积的再生氮气泡沫段塞,日增油8 t/d以上,井组含水下降6.6个百分点,并在后续水驱中通过再次起泡持续增油,累计增油4 947 t,投入产出比达到1.0∶1.6。该研究表明再生氮气泡沫驱能有效提高原油产量和采收率,在同类油藏具有重要应用潜力。  相似文献   

13.
注水开发稠油油藏氮气泡沫调驱技术   总被引:5,自引:0,他引:5  
辽河油田稠油油藏大部分采取注水开发方式生产,现已进入高含水开发阶段。随着弱凝胶调剖堵水施工轮次的增加,开发效果呈递减趋势。为改善油田注水开发效果和提高采收率,进行了氮气泡沫调驱技术研究。室内对比了3种起泡剂的表面张力和半衰期,研究了交替段塞的大小、气液比及段塞组合对泡沫体系的阻力特性的影响。室内实验结果表明,实施泡沫调驱后,采收率提高9%。在海外河油田的2口注水井进行了矿场试验,见到了明显的增油降水效果。  相似文献   

14.
针对低渗透非均质油藏空气泡沫驱过程中不同渗透率储层注入参数优化困难的问题,以安塞油田长63组天然岩心为例,采用一维岩心流动实验装置开展空气泡沫驱注入参数优化实验,对气液比、泡沫段塞体积、注入压力、注入速率和注入时机进行优化,获得最佳注入参数,并分析不同渗透率储层空气泡沫驱注入参数优化规律。结果表明:同一组岩心内,随着气液比、泡沫段塞体积、注入压力和注入速率增加,采出程度不断提高,当这些注入参数达到一定程度后,采出程度增幅减小或下降,各注入参数均存在最优值;不同注入参数对采出程度的影响很大,对渗透率较低的储层尤为敏感;渗透率与最优注入气液比、注入体积、注入压力、注入速率均具有较好的指数递减关系,低含水时注入空气泡沫能够获得更高的采收率。该研究结果为低渗透油藏空气泡沫驱分区分层精细化注入提供了理论依据。  相似文献   

15.
针对适合高温(90℃)高盐(TDS=95 994 mg/L)油藏的聚合物增强泡沫驱油体系(0.2%(w)PSDA+0.1%(w)Triton X-100+0.2%(w)KYPAM-II+地层水)开展其注入模式、气液比、剖面调整能力和现场试验评价。气和液同时注入就地发泡是最有效的注入模式,而气液交替注入效果最差,气液比明显影响驱油效率。在油藏条件下,优化气和液同时注入模式的气液体积比为3∶1。双岩心驱替实验结果表明,泡沫驱明显提高高渗层和低渗层的采收率,具有良好的调剖改善能力,聚合物增强泡沫驱可提高原油平均采收率15.3%。现场试验结果表明,两口井组采用泡沫驱原油采收率效果显著。  相似文献   

16.
低渗透油藏水驱转空气泡沫驱提高采收率物理模拟实验   总被引:1,自引:0,他引:1  
为进一步提高镇泾油田低渗透油藏原油采收率,利用室内驱油物理模拟技术,开展了水驱转空气泡沫驱提高采收率实验研究,探讨了空气泡沫驱对低渗透油藏水驱开发效果的影响。实验结果表明,在模拟地层条件下,初始水驱阶段的平均采收率为29.06%,水驱转空气泡沫驱后,采收率得到明显提高,增量均在10%以上;再次水驱后,最终采收率平均可达到45.42%。随着空气泡沫注入速度的增加,采收率呈上升趋势,但增幅逐渐减小。注入速度越大,气体突破时间越早,不过实验过程中并未发生明显的因气窜而导致采收率降低的现象;在相同条件下,空气泡沫注入总量为1倍孔隙体积时的采收率比0.6倍孔隙体积时的高5%。研究认为,通过交替注入起泡剂溶液与空气实现空气泡沫驱对于注水开发的低渗透油藏进一步提高原油采收率是可行的。  相似文献   

17.
泡沫复合驱研究   总被引:8,自引:2,他引:6  
讨论了泡沫三元复合驱的基本原理。介绍了室内实验研究结果。根据二元(AS)和三元(ASP)复合体系/天然气泡沫综合指数(Fq)等值图,选择石油磺酸盐ORS 41(及国产品AOS)为发泡剂;ORS 41浓度为1~4g/L、NaOH浓度为6~12g/L的二元体系产生超低界面张力,与天然气形成的泡沫按Fq具有中等强度,加入≤1 2g/L聚合物可使泡沫稳定,性能改善。在3个岩心上泡沫三元复合体系在水驱基础上提高采收率28 7%~39 4%。气液比越大,泡沫体系提高采收率幅度越大,但注入粘度越大。取气液比为1∶1。气液同时注入比交替注入的采收率高。在6个岩心上气液交替注入时,气液段塞越小,交替频率越大,采收率提高越多,在水驱基础上可提高30%以上。先导试验方案规定前置AP段塞0 02PV,气液比1∶1交替注入主段塞0 55PV和副段塞0 3PV,后续P段塞0 2PV,注入流量0 4PV/a。先导试验区6注10采,在大庆油田北二区东部,1984~1994年曾进行天然气驱,提高采收率12 9%,试验开始时采出程度43 8%,综合含水97 2%。试验于1997 02 20开始,2002 04先期结束,注天然气仅0 19PV,气液比0 34∶1,中心井含水91 5%,全区采收率增加21 85%,2口中心井采收率增加22 58%。试验动态和数值模拟表明采收率增加应>25%。图3表2参3。  相似文献   

18.
延长油田乔家洼区块属于典型的低孔、特低渗油藏。针对该区块基质致密和非均质性严重造成注水开发效果差的问题,通过开展CO2室内驱油实验,在水驱基础上分别对连续气驱和气水交替驱驱油潜力进行评价,并对气水交替驱流体注入速度、段塞尺寸及气水比等注入参数进行优化;同时,对区块采用水驱、优化井网后水驱、利用优化的CO2驱注入参数开展气驱和注气5 a后转气水交替驱4种开发方案进行数值模拟产量预测。实验结果表明:CO2驱在目标区块高含水后有着较大驱油潜力,连续气驱和气水交替驱分别在水驱基础上可提高采收率8.43,20.95百分点;最佳注入速度、最佳注入段塞尺寸和最佳气水比分别为0.727 m L/min,0.10 PV,1∶1。数值模拟结果表明,连续气驱和注气5 a后转气水交替驱,在开发15 a末,在水驱基础上分别可以提高采收率13.81,12.98百分点。  相似文献   

19.
泡沫辅助减氧空气驱技术突破单一气驱局限性,综合气驱和泡沫驱的技术优势,具有快速补充地层能量、提高波及体积的双重效果,又克服了空气气窜的缺点。通过对气液比、注采比等关键技术参数优化,在特低渗油藏历经十年的现场应用表明,该技术在扩大波及体积、提高地层能量和采收率方面效果显著,且未发生气窜,具有较强的技术适应性和良好的推广应用前景。  相似文献   

20.
周玉萍 《油田化学》2017,34(1):92-95
为提高江汉油田高盐中低渗油藏注水开发后期的原油采收率,用起泡剂和稳泡剂配制了泡沫体系,通过考察起泡剂类型、浓度及稳泡剂浓度对泡沫体系发泡体积和半衰期的影响优选了泡沫体系配方,研究了泡沫体系的耐油性、耐盐性及耐老化性,对泡沫驱注入参数进行了优化,通过对并联岩心的驱油实验考察了泡沫体系的封堵能力。研究结果表明,起泡剂和稳泡剂质量分数均为0.4%时,泡沫体系的发泡能力良好,发泡体积为110 mL,半衰期为427 min,泡沫体系与原油的界面张力较低(10~(-2)mN/m数量级);泡沫体系耐油性较好,在含油量为30%时的半衰期为40 min;耐盐性良好,在矿化度为300 g/L或钙镁离子为5 g/L时的半衰期大于350 min;耐老化性良好,在70℃下老化100 d的发泡体积和半衰期变化较小;低界面起泡剂氮气驱最佳注入参数为:气液比1.5∶1、注入段塞0.4 PV、注入速度1.2 mL/min,在此条件下泡沫体系可提高单管岩心采收率7.51%、并联岩心采收率10.04%,对王场油田高盐非均质油层具有良好的调驱效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号