首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
熔盐堆(Molten Salt Reactor,MSR)采用熔融的氟化盐混合物作为燃料,由于核燃料的特殊性,MSR在中子物理学方面与传统固体燃料反应堆有着较大区别。本文基于蒙特卡罗程序MCNP(Monte Carlo N Particle Transport Code),以美国橡树岭国家实验室(Oak Ridge National Laboratory,ORNL)熔盐堆实验(Molten-Salt Reactor Experiment,MSRE)为参考反应堆,系统研究了堆芯尺寸、燃料盐体积比、燃料盐重金属摩尔比、燃料盐渗透等物理参数对堆芯物理特性参数的影响。结果表明:随着堆芯尺寸增加,堆芯临界装载量有最小值;随着燃料盐体积比增加,燃料盐回路系统中重金属临界装载量先减少后增加,燃料温度系数的绝对值同样先减小后增加;燃料盐浸渗对堆芯反应性的影响,与燃料盐体积比增加对堆芯反应性产生的影响一致。本研究为2 MW液态燃料钍基熔盐堆(Thorium Molten Salt Reactor-Liquid Fuel,TMSR-LF1)设计提供理论参考。  相似文献   

2.
反应性控制系统的设计是反应堆物理设计的主要内容之一。熔盐堆采用熔融的氟化盐混合物作为燃料,由于核燃料的特殊性,熔盐堆在反应堆设计方面与传统固体燃料反应堆有着较大区别。本文鉴于熔盐堆的特殊性,针对2 MW液态燃料钍基熔盐堆(Thorium Molten Salt Reactor-Liquid Fuel,TMSR-LF1),提出多种停堆方式,包括排燃料盐、套管中注中子毒物、改变燃料盐成分、改变堆芯石墨栅元数,并进行了计算分析。分析结果表明:往套管中注入中子毒物是在控制棒失效的情况下很好的替换停堆方式;燃料盐成分可调,是熔盐堆本身具有的特点,因此往燃料盐中添加BF_3、LiF-BeF_2-ZrF_4、LiF-ThF_4,是调节堆芯反应性很好的方式;改变石墨栅元数也可以使反应堆停堆。本研究分析可以为熔盐堆停堆方式提供技术储备和理论参考。  相似文献   

3.
采用自编系统分析程序TREND,基于液态点堆动力学模型,针对10 MW石墨通道液态熔盐堆的设计,研究分析不同反应性在阶跃引入和线性引入情况下10 MW石墨通道液态熔盐堆堆芯功率、石墨温度和堆芯出口熔盐温度的瞬态变化。结果表明,阶跃引入低于570pcm(1pcm=10?5)反应性,堆系统能在无保护的情况下安全运行;当单根控制棒失提引入约800pcm时,反应性引入速率不超过8pcm/s,反应堆能够利用自身的温度、功率负反馈特性有效地控制功率峰值和降低堆芯出口温度,保证反应堆在无保护情况下安全运行。因此,液态熔盐堆具有良好的固有安全性。   相似文献   

4.
液态燃料反应堆与固态燃料反应堆相比,原理上有较大不同。液态熔盐堆中由于燃料流动带走缓发中子先驱核在堆外衰变导致堆芯反应性降低,且裂变产物在堆外回路中衰变也会引起一回路发热。本文使用熔盐堆中子动力学程序Cinsf1D探讨2 MW熔盐堆的临界动力学特性和安全特性,研究零功率临界下不同熔盐流速启泵和停泵导致的缓发中子先驱核流失所需改变的控制棒棒位。同时还计算了2 MW恒定功率情况下稳态运行及降低流速时一回路温度分布,并模拟了2 MW额定功率下停泵事件。停泵后由于缓发中子损失减少反应堆功率先缓慢增加,然后迅速降低到接近余热水平。停泵后堆芯温度缓慢增加后稳定在安全值以内,说明熔盐堆具有本征安全性。  相似文献   

5.
氟锂铍(FLiBe)熔盐作为液态熔盐堆的冷却剂和载体盐,具有一定的慢化性能,其热中子散射数据影响熔盐堆的中子学性能,进而影响熔盐堆物理设计和安全运行。基于通用蒙特卡罗粒子输运程序分析了液态FLiBe熔盐的热中子散射数据对65 MW熔盐堆堆芯中子能谱、不同能谱下有效增殖因数keff、核素反应率、温度反应性系数等中子学性能的影响。研究结果表明:考虑FLiBe熔盐热散射效应,堆芯中子能谱变硬,导致235U裂变反应率和keff变小,燃料的温度反应性系数中多普勒系数减小0.28×10-5 K-1,而密度反应性系数几乎无变化。当堆芯由热谱转变为相对较快的中子能谱时,FLiBe熔盐热散射效应导致235U裂变率减少的变化量降低,keff的下降幅度从9.2×10-4变为2×10-4。因此,熔盐堆堆芯物理计算需开展FLiBe熔盐的热中子散射数据影响的量化。  相似文献   

6.
液态熔盐堆采用熔融氟化盐为燃料,燃料熔盐出口温度是衡量熔盐堆安全的重要指标。通过堆芯功率控制可实现燃料熔盐出口温度控制。将液态熔盐堆堆芯划分成内区和外区,并基于能量守恒原理建立堆芯非线性模型,采用微扰理论对非线性模型进行线性化。基于堆芯线性化模型,采用模糊比例-积分-微分(PID)控制器设计堆芯功率控制系统。以熔盐增殖堆(MSBR)为例,开展堆芯功率控制仿真。结果表明,引入10-3、2×10-3阶跃反应性时,模糊PID控制器可以减小系统响应的上冲幅度和超调量,并且在堆芯功率发生了较大的负荷变化时,模糊PID控制器可以对堆芯功率的变化实现良好跟踪。故所采用的模糊PID控制器具有良好的动态性能,可实现对堆芯功率的良好控制。   相似文献   

7.
熔盐堆作为第四代核能系统堆型之一,液态燃料形态的特点使其可以实现在线处理和在线添料。为了提高中子经济性可以利用在线处理的氦鼓泡法,将氦气通入反应堆一回路,去除堆芯内的裂变气体(如Xe、Kr)。基于钍基熔盐液态堆(Thorium Molten Salt Reactor-Liquid Fuel1,TMSR-LF1)概念设计,结合熔盐实验堆(Molten Salt Reactor Experiment,MSRE)氙毒模型,分析了鼓泡法去除氙毒中~(135)Xe扩散规律和去除效率对氙毒的影响,并给出了对应的初始有效增殖因子的变化规律。分析结果表明,虽然存在~(135)Xe会大量向石墨扩散的可能性,但是鼓泡法仍然可以有效去除TMSR-LF1堆芯内的~(135)Xe,减小堆芯毒性,提高反应性。  相似文献   

8.
液态燃料熔盐堆的燃料熔盐在一回路中循环流动,一回路高温熔盐既是燃料,又是冷却剂,大部分核裂变能直接释放在燃料熔盐之中。随着燃料熔盐流动,一部分缓发中子先驱核(Delayed Neutron Precursors,DNP)在堆芯外一回路中衰变引起反应性损失。液态燃料熔盐堆中子物理与热工流体紧密耦合,传统固态燃料反应堆堆芯核热耦合程序不再适用于液态燃料熔盐堆。针对液态燃料熔盐堆特点,建立了包含带对流项的DNP输运方程和带热内热源热工流体方程的液态燃料熔盐堆动力学模型,并基于节块展开法,开发了堆芯三维动力学程序ThorCORE3D。使用美国橡树岭国家实验室建造运行的熔盐实验堆(Molten Salt Reactor Experiment,MSRE)稳态和瞬态实验基准题,对ThorCORE3D程序进行了初步验证。结果表明:ThorCORE3D程序计算值与MSRE实验值吻合良好,适用于液态燃料熔盐堆稳态设计与瞬态分析。  相似文献   

9.
《核技术》2017,(12)
对于液态燃料熔盐堆而言,核石墨的浸渗问题非常重要,关系反应堆运行安全性。因此,对核石墨的熔盐浸渗的研究必不可少。核石墨是多孔材料,其孔结构决定了其浸渗特性。本研究主要针对中国科学院上海应用物理研究所的液态燃料熔盐堆项目——钍基熔盐堆核能系统(Thorium-based Molten Salt Reactor,TMSR)而开展。利用光学显微镜、压汞仪以及真密度仪研究分析了4种具有代表性的核石墨的孔结构,并利用高压反应釜研究了它们在不同压强下的熔盐(氟化盐,650°C)浸渗特性。结果表明,不同核石墨的孔结构具有明显差异;核石墨的熔盐浸渗与压汞浸渗相似;石墨的孔结构(如入孔孔径、开孔率等)决定了一定压强下石墨是否会发生熔盐浸渗以及浸渗量的多少。  相似文献   

10.
李青远  徐博  周翀  邹杨  徐洪杰 《核技术》2019,42(7):79-88
流量分配设计是熔盐堆热工水力学研究的重点内容之一,流量分布直接决定了堆芯局部热点值和位置,制约着反应堆运行的安全性可靠性。以热功率373 MW钍基熔盐堆液态燃料(Thorium Based Molten Salt Reactor-Liquid Fuel,TMSR-LF)为研究对象,使用计算流体力学通用程序Fluent 15.0对堆芯流场进行了数值模拟。基于相应热工水力参数的分析结果,对原堆上下腔室的结构提出了若干分步式改进方案:下腔室设置折流板、增加上腔室高度、调整下腔室流量支撑板的孔径。优化结果表明:下腔室设置圆柱折流板能有效解决由局部涡流遮蔽部分通道引起的质量流量不均匀的问题;增加上腔室高度可以平衡径向方向内外侧通道出入口的压降,改善流量的均匀性;减小流量较高的内侧通道对应的金属支撑板孔道的半径可有效降低该处流量,使总体分布趋势更加平缓。最终确定的优化方案为在下腔室中央位置设置半径240 cm圆柱型折流板,半椭球型上腔室高度调整至45 cm,下腔室流量支撑板2~3排孔径由2.3 cm减至2.1 cm,4~5排由2.3 cm减至2.2 cm。以上结果对TMSR-LF2堆芯上下腔室的工程优化设计具有重要的参考价值。  相似文献   

11.
熔盐堆的进出口通道与堆芯相互连通,流动的液态燃料可以在通道和堆芯间自由穿行,有别于具有固定边界条件传统固体燃料反应堆。本文基于蒙特卡罗程序MCNP,以MSRE为参考反应堆,系统研究了熔盐堆不同燃料区域对反应堆物理的影响,其内容包括堆罐顶部和底部燃料,流通管道内燃料。分析了不同边界条件下的堆芯物理,给出了有效堆芯区域。结果表明,堆罐顶部和底部燃料对有效增殖因子(keff)和能谱影响较大,出口管道半径小于25 cm对有效增殖因子影响不大,管道长度超过20 cm后对有效增殖因子的扰动可以忽略,从而为熔盐堆的设计和计算程序的开发提供了理论基础。  相似文献   

12.
氢化锆(ZrH)由于具有耐高温、抗辐照和慢化能力强等优点,是反应堆常用的慢化剂。本工作研究具有钍铀转换能自持运行和较低次锕系核素(MA)产量的ZrH慢化熔盐堆的堆芯物理设计方案。采用MOC程序分析了不同燃料盐对于启堆和增殖性能的影响,为提高钍铀转换性能,对堆芯结构和慢化棒设计进行了优化与分析。结果表明:当熔盐体积比处于0.5~0.9时,ZrH慢化剂可将临界所需要的233U浓度降低至2%附近;采用含增殖层设计与FLi燃料盐装载的ZrH慢化熔盐堆,50 a平均钍铀转换比(CR)可达到1.028;移动式ZrH慢化棒堆芯设计可实现38 a的自持运行,且堆芯寿期末的MA产量比慢化棒不移动条件下采用FLi燃料盐和FLiBe燃料盐的MA产量分别减少约43%和8%,低于相同能量输出下石墨慢化熔盐堆的MA产量。  相似文献   

13.
针对熔盐堆燃料和慢化剂的特点,对压水反应堆热工水力计算程序CATHARE进行了适应性改造。使用改造后的程序进行熔盐堆单通道流体的物理和热工耦合计算分析。分析计算表明,改造后的CATHARE程序可以模拟反应性引入事故和流量引入事故等瞬态工况的堆芯热工物理耦合过程。  相似文献   

14.
熔盐堆(Molten Salt Reactor,MSR)是第四代反应堆6种堆型中唯一的液态燃料反应堆,与固态燃料-液体冷却剂反应堆相比,原理上有较大不同。在熔盐堆中,流动的熔盐既是燃料又是冷却剂与慢化剂,中子物理学与热工水力学相互耦合;由于熔盐的流动性,缓发中子先驱核会随燃料流至堆芯外衰变,造成缓发中子的丢失,导致堆芯反应性降低。正是由于熔盐堆的这些新特性,造成熔盐堆内缓发中子先驱核、温度等参数变化与固态燃料反应堆有所不同,需要研究熔盐堆在各种工况下的相关物理参数变化。本文主要工作是考虑缓发中子先驱核的流动性对熔盐堆的影响,研究适用于熔盐堆的二维圆柱几何时空中子动力学程序及与之耦合的热工水力学程序;利用该程序对熔盐堆中子物理学和热工水力学进行耦合计算,验证熔盐堆相关实验数据;并且计算了熔盐堆无保护启停泵及堆芯入口温度过冷过热工况,用于分析熔盐堆的安全特性。计算结果表明,程序能够对熔盐反应堆实验(Molten Salt Reactor Experiment,MSRE)的相关实验数据进行较好的模拟计算,并且验证了熔盐堆的固有安全性。  相似文献   

15.
钍基熔盐堆(Thorium Molten Salt Reactor,TMSR)是第四代核反应堆的代表之一,其特点是以熔融氟盐作为冷却剂和燃料的载体。在熔盐堆中,熔盐容易浸渗到核石墨内部,引发核石墨局部高温,造成核石墨损伤程度增加,严重破坏核石墨的结构,从而影响核石墨材料的宏观性能和使用寿命。然而,熔盐浸渗对核石墨力学性能的微观机制以及熔盐浸渗引起的微结构损伤或破坏机制目前仍不清晰,因此有待进一步研究原位环境下(如力学加载、高温等)熔盐浸渗对核石墨微结构的影响,并揭示微结构演化的相关机制。本文基于同步辐射原位拉伸X射线衍射技术(Two Dimensional X-ray Diffraction,2D-XRD),开展了外部载荷为0 N、15 N、21 N、27 N和32 N时熔盐浸渗后的核石墨IG-110在拉伸断裂过程中的微观结构演化研究,以揭示外部载荷条件下的核石墨IG-110与熔盐之间的原位实时相互作用及材料断裂的微观机制。实验结果表明:在拉伸断裂过程中外部载荷使熔盐浸渗后的核石墨IG-110的结晶性变差、层间距变大,同时FLiNaK盐的结晶性也明显变差。这一发现将有助于解释熔盐浸渗后核石墨IG-110力学性能的变化,理解核石墨IG-110与FLiNaK熔盐间的相互作用机理,有利于高性能核石墨的制备和TMSR的安全可靠运行分析。  相似文献   

16.
熔盐堆作为第四代先进核能系统,具有在线处理和利用钍燃料等各种优势。我们主要参考法国国家科学研究院(Centre National de la Recherche Scientifique,CNRS)的相关研究,该单位对熔盐堆堆芯结构进行优化,提高其钍铀转换率。利用SCALE(Standardized Computer Analyses for Licensing Evaluation)大型蒙特卡洛程序针对超热中子谱熔盐堆进行堆芯结构优化。从计算数据分析,Blanket增殖区在堆芯的不同位置可以提高Blanket中的钍铀增殖率,但是并不能提高整个堆芯的钍铀增殖率。对于超热谱的熔盐堆,单熔盐石墨孔道可以提供CNRS设计几乎相当的钍铀增殖率,同时可以极大地降低慢化剂石墨内的中子通量水平,延长更换堆芯石墨周期,提高整个熔盐堆的运行经济性。  相似文献   

17.
堆芯入口流场设计是小型固态燃料熔盐堆系统项目内容之一,它对反应堆结构的稳定性、堆芯温度和流场分布有着非常重要的影响。研究了熔盐流道流通面积变化对堆芯入口温度、流场分布及压降的影响,优化熔盐流道几何结构。以小型熔盐球床堆模型为研究对象,取符合实际边界条件的输入参数,通过改变熔盐流道流通面积,使用计算流体力学(Computational Fluid Dynamics,CFD)通用程序Fluent 16.0对堆芯入口内熔盐的热工水力特性进行数值模拟。在考虑实际下反射层流道的流通面积占比最大为18.14%下,研究了熔盐流道流通面积占比在区间[0,15.00%]变化。结果表明,堆芯活性区熔盐最高局部热点温度随熔盐流道流通面积比的增大而增高;堆芯入口内的压降随下反射层熔盐流道流通面积比的减小而增大;在径向方向上流进孔道的熔盐流速随着孔道远离堆芯位置而增大。本研究可为小型固态燃料球床熔盐堆优化设计提供一定的参考价值。  相似文献   

18.
本文利用了一个根据球床模块堆(Pebble Bed Modular Reactor,PBMR)用核石墨材料辐照性能数据编写的用户自定义材料模型(User defined Material model,UMAT),按照美国橡树岭国家实验室(Oak Ridge National Laboratory,ORNL)的液态燃料熔盐试验堆(Molten Salt Reactor Experiment,MSRE)用核石墨构件尺寸,为钍基熔盐堆(Thorium-based Molten Salt Reactor,TMSR)设计了一款方型核石墨构件。利用新编UMAT对该核石墨构件进行了初步的应力分析。分析结果表明,在没有预制裂纹的情况下辐照梯度越大核石墨构件中心区域最大主应力值越大,构件的断裂位置可能出现在构件中心位置处;对于有V型凹口预制裂纹的情况,应力集中部位均出现在预制裂纹尖端附近,这将可能导致裂纹尖端附近出现裂纹扩展,从而引起构件断裂失效。  相似文献   

19.
《核技术》2015,(5)
10-MWt固态钍基熔盐堆(Thorium-based Molten Salt Reactor-Solid Fuel,TMSR-SF)使用TRISO(Tri-structural isotropic)颗粒燃料元件,并采用熔融氟盐作为一回路冷却剂,附着在燃料元件上的熔盐有可能影响系统反应性。因此,需要分析在燃料元件的贮存过程中熔盐附着燃料元件对贮存临界安全的影响。使用SCALE6.1的TRITON(Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion)模块对TMSR-SF堆芯建模并进行燃耗计算,使用MCNP对乏燃料贮存系统进行临界计算。分别考虑熔盐浸渗球形燃料元件和熔盐包覆在球形燃料元件表面两种典型情况下,熔盐附着对贮存系统反应性的影响。针对乏燃料贮存系统,以浸渗最大量,即熔盐体积是石墨体积的13.9%为前提,临界计算结果表明,熔盐浸渗入石墨基体贮存系统的反应性比熔盐包覆在球形燃料元件表面的贮存系统的反应性要大5%;与没有熔盐附着的情况相比,有熔盐附着的情况下贮存系统反应性要大15%。对乏燃料贮存系统的临界安全分析可知,两种典型的熔盐附着模型对贮存系统的反应性存在一定的影响,但无论是熔盐浸渗还是包覆,贮存系统仍处于次临界,意味着贮存系统在正常工况下是安全的。  相似文献   

20.
许田贵  邹杨  徐博  朱贵凤  孙强 《核技术》2022,45(5):87-98
误提棒未能紧急停堆(Anticipated Transient Without Scram,ATWS)事故是熔盐堆的超设计基准事故之一,以125 MW液态熔盐堆为研究对象,采用RELAP5-TMSR(Reactor Excursion and Leak Analysis ProgramThorium Salt Reactor)程序,针对误提棒ATWS事故,选取三种停堆策略分析反应堆功率和熔盐温度等关键参数的变化。此外对反应性引入价值、提棒速度和温度系数等若干重要因素也开展了相应的敏感性分析。分析结果表明:维持一回路主泵运行、关闭二回路主泵和三回路风机的停堆策略是三种策略中堆芯熔盐温度最低的;在仅维持一回路主泵运行的情况下,温度极值与反应性引入价值、引入速率及温度反应性系数密切相关,温度峰值随反应性引入价值和提棒速度的增加而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号