首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In order to ascertain the key factors affecting the lifetime of the triple grids in the LIPS-300 ion thruster,the thermal deformation,upstream ion density and component lifetime of the grids are simulated with finite element analysis,fluid simulation and charged-particle tracing simulation methods on the basis of a 1500 h short lifetime test.The key factor affecting the lifetime of the triple grids in the LIPS-300 ion thruster is obtained and analyzed through the test results.The results show that ion sputtering erosion of the grids in 5 kW operation mode is greater than in the case of 3 kW.In 5 kW mode,the decelerator grid shows the most serious corrosion,the accelerator grid shows moderate corrosion,and the screen grid shows the least amount of corrosion.With the serious corrosion of the grids in 5 kW operation mode,the intercept current of the acceleration and deceleration grids increases substantially.Meanwhile,the cold gap between the accelerator grid and the screen grid decreases from 1 mm to 0.7 mm,while the cold gap between the accelerator grid and the decelerator grid increases from 1 mm to 1.25 mm after 1500 h of thruster operation.At equilibrium temperature with 5 k W power,the finite element method(FEM)simulation results show that the hot gap between the screen grid and the accelerator grid reduces to 0.2 mm.Accordingly,the hot gap between the accelerator grid and the decelerator grid increases to 1.5 mm.According to the fluid method,the plasma density simulated in most regions of the discharge chamber is 1?×?10~(18)-8?×?10~(18)m~(-3).The upstream plasma density of the screen grid is in the range 6?×?10~(17)-6?×?10~(18)m~(-3)and displays a parabolic characteristic.The charged particle tracing simulation method results show that the ion beam current without the thermal deformation of triple grids has optimal perveance status.The ion sputtering rates of the accelerator grid hole and the decelerator hole are 5.5?×?10~(-14)kg s~(-1)and 4.28?×?10~(-14)kg s~(-1),respectively,while after the thermal deformation of the triple grids,the ion beam current has over-perveance status.The ion sputtering rates of the accelerator grid hole and the decelerator hole are 1.41?×?10~(-13)kg s~(-1)and 4.1?×?10~(-13)kg s~(-1),respectively.The anode current is a key factor for the triple grid lifetime in situations where the structural strength of the grids does not change with temperature variation.The average sputtering rates of the accelerator grid and the decelerator grid,which were measured during the 1500 h lifetime test in5 k W operating conditions,are 2.2?×?10~(-13)kg s~(-1)and 7.3?×?10~(-13)kg s~(-1),respectively.These results are in accordance with the simulation,and the error comes mainly from the calculation distribution of the upstream plasma density of the grids.  相似文献   

2.
The grid structure has significant effects on the discharge characteristics of an ion thruster.The discharge performances of a 30 cm diameter ion thruster with flat,convex and concave grids are studied.The analysis results show that the discharge chamber with a convex grid has a larger’magnetic-field free area’ than the others,and the parallelism of the magnetic-field isopotential lines and anode is generally the same in the three models.Plasma densities of the three structures at the grid outle...  相似文献   

3.
An electron cyclotron resonance ion thruster must emit an electron current equivalent to its ion beam current to prevent the thruster system from being electrically charged.This operation is defined as neutralization.The factors which influence neutralization are categorized into the ion beam current parameters,the neutralizer input parameters,and the neutralizer position.To understand the mechanism of neutralization,an experiment and a calculation study on how these factors influence thruster neutralization are presented.The experiment results show that the minimum bias voltage of the neutralizer was-60 V at the ion beam current of 80 mA for the argon propellant,and a critical gas flow rate existed,below which the coupling voltage increased sharply.Based on the experiment,the neutralization was analyzed by means of a onedimensional calculation model.The computation results show that the coupling voltage was influenced by the beam divergence and the negative potential zone near the grids.  相似文献   

4.
Both the long-life and multi-mode versions of LIPS-200 ion thruster are under investigation in LIP (Lanzhou Institute of Physics). To confirm the feasible ranges of the beam current and accel (abbreviation for accelaration) grid potential to apply to the thruster, the wide-range beam perveance (the state of beam focus) and saddle point potential (the lowest potential along beamlet centerline) characteristics of LIPS-200 are studied with a test-verified PIC-MCC (Particle in Cell-Monte Carlo Collisions) model. These characteristics are investigated with both the initial and the eroded states of the accel grid aperture diameter. The results show that the feasible ranges of these parameters with respect to perveance/crossover (overfocused) limit extend as the operating time accumulates, while the feasible range of accel grid potential narrows due to a reduced EBSF (electron backstreaming failure) margin. The feasible ranges determined by the initial condition are: (i) the beam current up to 0.981 A, and (ii) the accel grid potential up to −85 V. A 23% enlargement of the aperture diameter would bring up to 48 V of EBSF margin loss.  相似文献   

5.
Beam flatness is an important parameter that determines the performance and the lifetime of a gridded ion thruster.To improve the beam flatness of the 30 cm (LIPS-300) ion thruster,variable aperture ion optics that adapts to the decreasing ion density as the radius increases is proposed.It is the ion optics that the screen grid surface is divided into several zones,where the aperture diameter in each zone is determined by the ion density and the electron temperature upstream of the screen grid.The beam current density in the central area is artificially reduced.A particle in cell-Monte Carlo collision model is applied in this work to investigating the effect of variable aperture on the perveance and the maximum beam current per aperture by simulating the extraction,focusing and acceleration processes of ions.Taking into account the engineering implementability,the screen grid surface is divided into four zones.The hole diameter in each zone is decreased from 1.95 mm to 1.8 mm,1.9 mm,1.8 mm and 1.7 mm,respectively.The simulation results show that the maximum ion density in the center area of grid is decreased by 10.6% and 6.99%,while it is increased by 6.49% and 22.3% in the edge region,respectively.The beam flatness of the variable aperture ion optics is improved from 0.69 to 0.88.The erosion rate is decreased by 31.9%,but the total beam current is also decreased by 7.15%.The simulation results can provide a valuable reference of the development of the ion thruster.  相似文献   

6.
Vacuum insulation of 1 MV is a common issue for the HV bushing and the accel- erator for the ITER neutral beam injector (NBI). The HV bushing as an insulating feedthrough has a five-stage structure and each stage consists of double-layered insulators. To sustain 1 MV in vacuum, reduction of electric field at several triple points existing around the double-layered insulators is a critical issue. To reduce electric field simultaneously at these points, three types of stress ring have been developed. In a voltage holding test of a full-scale mockup equipped with these stress rings, 120% of rated voltage was sustained and the voltage holding capability required in ITER was verified. In the MeV accelerator, whose target is the acceleration of a H ion beam of 1 MeV, 200 A/m 2 , the gap between the grid support was extended to suppress breakdowns triggered by electric field concentration at the edge and corner of the grid support. This modi- fication improved the voltage holding capability in vacuum, and the MeV accelerator succeeded in sustaining 1 MV stably. Furthermore, it appeared that the H ions beam was deflected and a part of the beam was intercepted at the acceleration grid. This causes high heat load on the grids and breakdowns during beam acceleration. To suppress the direct interception, a new grid was designed with proper aperture displacement based on a three dimensional beam trajectory analysis. As a result, 980 keV, 185 A/m 2 H ion beam acceleration has been demonstrated, which is close to the ITER requirement.  相似文献   

7.
A neutral beam injector (NBI) test stand was constructed to develop a multi-megawatt prototype ion source as an auxiliary heating system on experimental advanced superconducting tokamak. A power supply system for the NBI test stand components such as a set of dc power supplies for plasma generator, a dc high voltage power supply of a tetrode accelerator, a transmission line and a surge energy suppressor. Stable arc discharges of the plasma generator with hydrogen gases for 100 s long pulse have been produced by six Langmuir probes feedback loop regulation mode to control the arc power supply. The 4 MW hydrogen ion beam of 1 s is extracted with beam energy of 80 keV and the beam current of 52 A. The dc high voltage power supply for the plasma grid of the prototype ion source was designed to contribute maximum voltage of 100 kV and current of 100 A. The high voltage power output is continuously adjustable to satisfy with plasma physics experiment in operation frequency of 10 Hz. To prevent damage of the beam source at high voltage breakdown, core snubber using deltamax soft magnetic materials have been adopted to satisfy the input energy into the accelerator from the power supply can be reduced to about 5 J in the case of breakdown at 80 kV. For the transmission line, a disc shape multi cable coaxial configuration was adopted and which the dimension of the diameter is 140 mm at the core snubber. The major issues of discharge characteristics with long pulse and beam extraction with high power for the prototype ion source were investigated on the NBI test stand.  相似文献   

8.
A 2D hybrid-PIC simulation model is proposed to investigate the beam extraction phenomena of the ion thruster. In which the electrons of the plasma sheath upstream the accelerator grid are assumed as particles while the downstream are fluid for improving the calculation efficiency. The ion transparency, plasma sheath formation, ion beam extraction characteristic of a two- and three-grid system have been compared in detail in this paper. From the comparison of the appearing time of the under-perveance phenomena in the two- and three-grid system, it illustrated that the two grid system has the wider operation range of the plasma densities than the three-grid one.  相似文献   

9.
Since the high efficiency discharge is critical to the radio-frequency ion thruster (RIT),a 2D axial symmetry hybrid model has been developed to study the plasma evolution of RIT.The fluid method and the drift energy correction of the electron energy distribution function (EEDF) are applied to the analysis of the RIT discharge.In the meantime,the PIC-MCC method is used to investigate the ion beam current extraction character for the plasma plume region.The beam current simulation results,with the hybrid model,agree well with the experimental results,and the error is lower than 11%,which shows the validity of the model.The further study shows there is an optimal ratio for the radio-frequency (RF) power and the beam current extraction power under the fixed RIT configuration.And the beam extraction efficiency will decrease when the discharge efficiency beyond a certain threshold (about 87 W).As the input parameters of the hybrid model are all the design values,it can be directly used to the optimum design for other kinds of RITs and radio-frequency ion sources.  相似文献   

10.
In order to study the key technology and physics of RF driven negative ion source for neutral beam injector in China, the Hefei utility negative ions test equipment with RF source was developed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Its negative ion source can be equipped with single or double RF drivers. There is a plasma expansion chamber with depth of 19 mm and an enhanced filter field. A three electrodes negative ion accelerator was employed to extract and accelerate the negative ions, which are plasma grid, extraction grid and ground grid. And there are several diagnostic tools for the plasma and beam parameters measurement. The characteristics of plasma generation, negative ion production and extraction were studied on the test equipment. The negative ion beam was extracted from the RF driven negative ion source for the first time. The detailed structure and main results are presented in this article.  相似文献   

11.
The operating principles of a direct-action accelerator designed to acceIerate electrons to an energy of 1.5 MeV with a mean beam power of tens of kilowatts and an efficiency of around 90% are described. The electron-current pulse length can be varied from 0 to g msec, and the repetition frequency up to 50 times per sec. The mean current im may reach 1/6 of the maximum current in the pulse. Magnetic lenses are installed in order to focus electron currents of up to 100 mA into a beam a few mm in diameter in the accelerating tube. Heavy-metal screens are placed close to the axis of the tube in order to protect the gas gaps and other electrically-stressed parts of the accelerator from radiation arising inside the tube.The construction of a system for producing an electron beam with an energy of 1.5 MeV and a mean power of 25 kW (im = 17 mA) is described.Translated from Atomnaya Énergiya, Vol. 20, No. 5, pp. 385–392, May, 1966.  相似文献   

12.
中性束注入器(Neutral Beam Injector,NBI)是东方超环(Experimental Advanced Superconducting Tokamak,EAST)核聚变实验装置辅助加热的重要组成部分。目前NBI离子源引出系统采用四电极结构,即加速电极、梯度电极、抑制电极和地电极。抑制极电源是为其中的抑制电极提供负电位的高压直流电源。根据抑制极电源输出特性的要求,输出端采用串联绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)作为调制开关。为研究IGBT串联技术对均压效果和抑制极电源输出特性的影响,采用PSpice软件对IGBT开关进行了建模,并进行了不同电路参数下的仿真。仿真表明:一定条件下,电阻电容二极管(Resistance Capacitance Diode,RCD)缓冲电路中电容参数对动态均压效果和电源关断特性具有决定性影响,缓冲电阻影响电容的放电时间及放电电流峰值。最后给出了相应的实验测试结果。该研究结果可以明确缓冲电路参数与均压效果以及抑制极电源开关特性之间的定量关系,为抑制极电源开关特性的进一步优化及其与加速极电源的特性匹配提供数据指导,对于NBI离子源的安全稳定运行具有重要意义。  相似文献   

13.
A high current electron beam is required for transmuting fission products using gamma rays. Elemental technology for a linac that generates a high current beam in an efficient and stable manner is being developed at Japan Nuclear Cycle Development Institute (JNC). A beam dump for the high current, low energy electron beam (20 mA, 10 MeV) from this accelerator has been constructed and tested at JNC. A Ring and Disk (RD) structure was adopted to absorb the beam safely and to analyze the beam condition in real time. The thermal and stress analysis showed that a 200 kW electron beam could be securely stopped. The performance of the beam dump was evaluated using a beam of 7.0 MeV and an average current of 0.84 mA. The measured results showed that the electrons transported from the accelerator were completely absorbed. The temperature rise of the plates and the 1 cm dose equivalent rate of bremsstrahlung photons were consistent with the simulation data. In addition, the beam dump was found to be capable of monitoring the beam condition directly from the temperature distributions and peak current.  相似文献   

14.
In order to achieve a better understanding of plume characteristics of LIPS-300 ion thruster, the beam current density, ion energy and electron number density of LIPS-300 ion thruster plume are studied with an Advanced Plasma Diagnostics System(APDS) which allows for simultaneous in situ measurements of various properties characterizing ion thruster, such as plasma density, plasma potential, plasma temperature and ion beam current densities, ion energy distribution and so on. The results show that the beam current density distribution has a double‘wing' shape. The high energy ions were found in small scan angle, while low energy ions were found in greater scan angle. Electron number density has a similar shape with the beam current density distribution.  相似文献   

15.
低能大功率辐照加速器广泛用于辐照加工产业。本工作研制出一台二极电子枪作为高压型低能大功率辐照加速器的电子源,并通过出束实验对其加以优化,最后确定了二极电子枪的最佳结构、尺寸及运行参数等。结果表明,从电子枪引出电子束的能量为5~25 keV,流强为60~100 mA,束斑为15~30 mm,半散角为0.6°~1.6°,不稳定度好于±0.6%。该电子枪工作稳定,寿命长于5 000 h。  相似文献   

16.
Heavy Ion Medical Machine (HIMM), developed by the Institute of Modern Physics, Chinese Academy of Sciences, is the first medical heavy ion accelerator with independent intellectual property rights in China. Because the RAMPING mode was used for high frequency pulse dipole magnets of HIMM and the rising rate of magnetic field is 1.6 T/s, the vacuum chamber installed in the high frequency pulsed magnet is a thin-wall stainless vacuum chamber with reinforcing ribs to reduce the influence of eddy current on the ion beam stability. However, the gap size of magnet occupied by thin-wall stainless vacuum chamber with reinforcing ribs is too large, and it not only causes the high cost of magnets, but also greatly improves the maintenance cost. Based on these reasons, a new thin-wall vacuum chamber (0.3 mm) with ceramic lining was put forward and the prototype was designed and manufactured. The test results show that the obtained pressure of the prototype is in the order magnitude of 10-10 Pa, and the magnet gap can be effectively reduced. And it is the development direction of thin-wall vacuum chamber of accelerator in the future.  相似文献   

17.
中国科学院近代物理研究所研制的医用重离子加速器装置是我国第1台拥有自主知识产权的医用重离子加速器,其高频脉冲二极磁铁使用RAMPING工作模式且磁场上升速率为1.6 T/s,所以安装在高频脉冲磁铁内的真空室采用一种薄壁加筋结构不锈钢真空室以减少涡流对离子束稳定性的影响。然而由于薄壁加筋不锈钢真空室占用磁铁气隙尺寸偏大,不仅造成了磁铁造价成本偏高,更是提高了运维成本。基于以上原因,本文提出陶瓷内衬薄壁(0.3 mm)真空室,并研制了原理样机。测试结果表明:样机真空度进入了10-10 Pa量级范围,并可有效减小磁铁气隙,是未来加速器薄壁真空室的发展方向。  相似文献   

18.
400 kV强流中子发生器的物理设计   总被引:1,自引:1,他引:0  
对400 kV强流中子发生器进行了物理设计。采用Poisson/Superfish软件对中子发生器高压电极和加速管的电场分布进行了模拟,结果显示,各关键区域的空间电场最大值远低于击穿电场限值。以强流束旁轴包络方程为基本模型,发展了强流束传输系统束包络的计算机模拟程序IONB1.0,模拟了中子发生器传输系统中40 mA的D束流包络。结果显示,设计方案中所采取的两间隙高梯度加速结构有较强的聚焦性能,能有效抵消强流束空间电荷效应造成的束流发散,加速管出口处的束包络半径约3 cm,由加速管出口处的空间电荷透镜和三重四极磁透镜组成的传输系统能将束流聚焦在约140 cm处的靶上,且束斑直径小于2 cm。  相似文献   

19.
Analysis of Numerical Simulation Results of LIPS-200 Lifetime Experiments   总被引:1,自引:0,他引:1  
Accelerator grid structural and electron backstreaming failures are the most important factors affecting the ion thruster's lifetime.During the thruster's operation,Charge Exchange Xenon(CEX) ions are generated from collisions between plasma and neutral atoms.Those CEX ions grid's barrel and wall frequently,which cause the failures of the grid system.In order to validate whether the 20 cm Lanzhou Ion Propulsion System(LIPS-200) satisfies China's communication satellite platform's application requirement for North-South Station Keeping(NSSK),this study analyzed the measured depth of the pit/groove on the accelerator grid's wall and aperture diameter's variation and estimated the operating lifetime of the ion thruster.Different from the previous method,in this paper,the experimental results after the 5500 h of accumulated operation of the LIPS-200 ion thruster are presented firstly.Then,based on these results,theoretical analysis and numerical calculations were firstly performed to predict the on-orbit lifetime of LIPS-200.The results obtained were more accurate to calculate the reliability and analyze the failure modes of the ion thruster.The results indicated that the predicted lifetime of LIPS-200's was about 13218.1 h which could satisfy the required lifetime requirement of 11000 h very well.  相似文献   

20.
石磊 《原子能科学技术》2010,44(Z1):572-575
分析了脉冲离子轰击靶膜和衬底的热效应,在能量较低的情形下,离子轰击处理为靶膜表面热流输入。采用有限元程序,对能量为600keV、束流为12mA的不同束斑半径的脉冲离子流轰击Cu基Ti靶的热传导进行了数值计算,得到了热传导清晰物理图象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号