首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper presents the optically stimulated luminescence (OSL) properties of neutron dosimeters in powder and in the form of pellets prepared with a mixture of Al2O3:C and neutron converters. The neutron converters investigated were high density polyethylene (HDPE), lithium fluoride (LiF), lithium fluoride 95% enriched with 6Li (6LiF), lithium carbonate 95% enriched with 6Li (6Li2CO3), boric acid enriched with 99% of 10B and gadolinium oxide (Gd2O3). The proportion of Al2O3:C and neutron converter in the mixture was varied to optimize the total OSL signal and neutron sensitivity. The neutron sensitivity and dose-response were determined for the OSL dosimeters using a bare 252Cf source and compared to the response of Harshaw TLD-600 and TLD-700 dosimeters (6LiF:Mg,Ti and 7LiF:Mg,Ti). The results demonstrate the possibility of developing an OSL dosimeter made of Al2O3:C powder and neutron converter with a neutron sensitivity (defined as the ratio between the 60Co equivalent gamma dose and the reference neutron absorbed dose) and neutron–gamma discrimination comparable to the TLD-600/TLD-700 combination. It was shown that the shape of the OSL decay curves varied with the type of the neutron converter, demonstrating the influence of the energy deposition mechanism and ionization density on the OSL process in Al2O3:C.  相似文献   

2.
The inert matrix materials CeO2, MgO, Y2O3, MgAl2O4 and Y3Al5O12 were selected as candidates for inert matrices for the EFTTRA2-T3 neutron irradiation experiment. Most targets contain 20% enriched 235U fissile inclusions with an average size of roughly 150 μm. The volume fraction of the fissile phase is either 2.5 vol% UO2 or 19.6 vol% of Y5.78UOx in the inert matrices. The samples were irradiated for 198.9 full power days in the High Flux Reactor in Petten. The calculated burn-up is between 17.3 and 19.5% FIMA. The temperature of the cladding was kept at 600 ± 25 K. A dimensional change of at least +5 % is measured after neutron irradiation for Y3Al5O12 and MgAl2O4 with macro dispersions of UO2; the other targets with a macro dispersion of UO2 show a volume change of less than + 1 vol%. The fractional release of the fission gas Xe is more than 40% for the MgAl2O4 and Y3Al5O12 matrices with a macro dispersion of UO2, the other targets show a fractional release of Xe of less than 15%. Cracks are observed in MgO and MgAl2O4 targets which is possibly related to the stress caused by swelling of the UO2 inclusions.  相似文献   

3.
Cross section measurements for the reactions 52Cr(n,2n)51Cr, 66Zn(n,2n)65Zn, 89Y(n,2n)88Y and 96Zr(n,2n)95Zr were carried out in the neutron energy range 13.47–14.79 MeV applying the activation technique. Neutrons were produced via the T(d,n)4He reaction, making use of the variation of neutron energy with the emission angle. The neutron fluences incident on the samples were determined relative to the well-evaluated cross section for the reaction 93Nb(n,2n)92mNb.

The induced γ-ray activities of the irradiated Zn, Zr and Y2O3 samples and their monitor foils were measured by means of a calibrated Ge(Li) γ-ray detector at the KFI, Debrecen. At the IRK, Vienna, relative γ-ray measurements using a high-purity Ge detector were combined with integral γ-ray counting by means of a NaI(TI) well-type detector on the Cr, Zn and Zr foils of highest activity and on some Nb monitor foils; integral γ-ray counting only was applied in the case of the Y2O3 samples. All necessary corrections were taken into account.

The results are compared to the corresponding results of cross section measurements published in the literature. The uncertainties obtained in this work are considerably smaller in most cases than the uncertainties given by other authors.  相似文献   


4.
Neutron beam designs were studied for TRIGA reactor with a view to generating thermal, epithermal and fast neutron beams for both medical neutron capture therapy (NCT) and industrial neutron radiography (NR). The beams are delivered from thermal and thermalizing columns, and also horizontal beam hole. Several prospective neutron filters (high-density graphite (G), bismuth (Bi), single-crystal silicon (Si), aluminum (Al), aluminum oxide (Al2O3), aluminum fluoride (AlF3) and lead fluoride (PbF2)) were examined for obtaining sufficiently intense neutron beam for various applications. Monte Carlo calculations indicated that with a suitable neutron filter arrangement, thermal and epithermal neutron beams attaining 2×109 and 7×108 n cm−2S−1, respectively, could be obtainable from thermal and thermalizing columns with the reactor operating at 100 kW. These neutron beams could be adopted for boron neutron capture therapy. Compared with these columns, horizontal beam port would deliver neutron fluxes of 10−2 10−3 lower intensity, but produced thermal and neutron beams would be adequate for different application of nondestructive inspection by neutron radiography.  相似文献   

5.
利用电化学方法获得316NG不锈钢(316NG)在300℃、pH=5~8硼-锂溶液中的极化曲线和交流阻抗(EIS),并绘制相应水化学条件下的电位-pH图。结果表明:碱性条件下钝化区尤其是二次钝化区极化电流急剧减小,pH=7~8时阳极极化表现出3次钝化现象,偏碱性条件极化阻抗显著高于偏酸性和近中性条件,说明碱性条件下316NG表面钝化膜保护效果更佳。pH=5时电化学极化后样品表面主要生成Cr2O3和Fe2O3;碱性条件下(pH=6~8)样品表面氧化膜为分层结构:最外层为Fe3O4,随深度增加开始出现NiFe2O4,内层成分主要为FeCr2O4。随着电导率升高,溶液电阻、电荷传递电阻和钝化膜电阻均显著降低。依据极化曲线绘制的电位-pH图与文献结果相吻合。   相似文献   

6.
7.
提高燃料燃耗的一个有效手段是通过增大UO2晶粒尺寸来减少元件内部气体压力,在大晶粒UO2芯块中,裂变气体到达晶界表面的距离增加,因而裂变气体的释放速率降低,元件内部气体压力的增高缓慢。本文研究了添加Cr2O3对UO2晶粒尺寸的影响。对纯UO2、添加0.5% Cr2O3及5% Cr2O3 3种配方的芯块进行了试验,在5%H2Ar保护下,以10 ℃/min和5 ℃/min的升温速率升温至1 700 ℃,然后烧结2 h或4 h,对比纯UO2芯块与添加Cr2O3的芯块发现,添加Cr2O3可有效增大晶粒尺寸;较长的烧结时间可促进晶粒长大;较低的升温速率也使晶粒长大。烧结过程产生液相烧结,液相浸润晶粒边界,促进晶粒长大。  相似文献   

8.
Post-irradiation examinations of rock-like oxide fuels were performed in JAERI to evaluate irradiation behavior and geochemical stability. Five kinds of fuels were prepared using 20% enriched U instead of Pu; a single-phase fuel of an yttria-stabilized zirconia containing UO2 (U-YSZ), two particle-dispersed type fuels of U-YSZ particles + MgAl2O4/Al2O3 powder, two homogeneously blended type fuels of U-YSZ powder + MgAl2O4/Al2O3 powder. The fuels were irradiated in JRR-3 for about 100 days and estimated irradiation conditions were as follows; linear power was 15 kW m−1, thermal neutron fluence was 7 x 1024 m−2 and fuel temperatures at the surface were 740–1130 K. From the results of non-destructive examinations, the stainless steel cladding surfaces were partially discolored by oxidation and no remarkable deformation of the pins was observed. Significant pellet fragmentation was not observed in spite of the crack formation as observed in irradiated LWR UO2 fuels. Nonvolatile FPs were observed only in pellets but volatile Cs moved partly to the plenum. From these examinations, no significant difference in macroscopic irradiation behavior was distinguished among 5 fuels.  相似文献   

9.
为改善GdI3:Ce闪烁体在探测中子过程中的γ抑制能力,使用Geant4和XCOM计算了其γ线性吸收系数,并通过模拟计算与实验测量研究了铅屏蔽法抑制γ的有效性。结果表明:GdI3:Ce闪烁体在探测中子过程中易受低能γ射线的干扰;随着铅层厚度的增加,100 keV~1 MeV的γ射线对中子探测的干扰减小,而3~10 MeV的γ射线的干扰呈先增加后减小的趋势。对252Cf中子源的实验测试发现,在碘化钆闪烁体外围添加铅层后,中子峰得以显现;随着铅层厚度的增加,中子峰内净计数减小,而净计数与本底计数的比值上升。模拟和实验结果均表明,在使用GdI3:Ce闪烁体探测中子时,应根据中子探测效率和信噪比的优化确定γ屏蔽铅层的厚度。  相似文献   

10.
为了研究纳米Y2O3对HT9钢的显微结构和力学性能的影响,采用粉末冶金工艺,制备了纳米Y2O3含量为0.1%~0.9%的ODS-HT9钢样品,测定了样品的抗拉强度、伸长率、维氏硬度等力学性能,利用透射电子显微镜(TEM)观察和分析了样品中纳米Y2O3颗粒的分布状况、形状和相结构,利用扫描电子显镜(SEM)观察了样品拉伸断口的形貌。研究表明,球磨和热压烧结后,纳米Y2O3颗粒能够均匀地分布于基体中,相结构和形状未发生明显变化。弥散分布的纳米Y2O3硬质颗粒,具有明显的弥散强化作用,导致ODS-HT9钢的抗拉强度和维氏硬度随Y2O3含量的增加而显著增加,伸长率显著降低。Y2O3含量低于0.7%时,样品以韧性断裂为主,进一步增加含量,断裂方式将由韧性断裂转变成脆性断裂。纳米Y2O3含量为0.3%~0.5%的ODS-HT9钢,抗拉强度达到了913~936 MPa,伸长率为10.7%~11.2%,具有良好的综合力学性能。本文研究结果有助于ODS-HT9钢高温性能的研究及其在反应堆中的实际应用。   相似文献   

11.
Macroscopic length (linear swelling) and thermal diffusivity changes were measured for heavily neutron-irradiated -Al2O3, AlN, β-Si3N4 and β-SiC that were irradiated under the same capsule to compare the difference between these materials. And in addition, several capsules were irradiated under different temperatures (646–1039 K) and to different neutron doses (0.4–8.0 × 1026 n/m2) in the Japanese experimental fast reactor JOYO. The swelling and the thermal diffusivity of as-irradiated specimens showed some dependence on the neutron-irradiation dose and the irradiation temperature, and that indicates stability under neutron-irradiation environments. Alpha-Al2O3 and AlN showed relatively large swelling and degradation of thermal diffusivity than β-Si3N4 and β-SiC. This difference is related to the crystal structure of each material. The dependence of swelling on irradiation dose, that is, -Al2O3 showed linear inclination but β-Si3N4 and β-SiC showed saturation, supports the model of defect structures. In addition, annealing behaviors of swelling and thermal diffusivity were compared to analyze the behavior of defects at higher temperature.  相似文献   

12.
Previous work on diffusion in inert-gas bombarded Al2O3 has revealed the presence of four diffusion processes, of which two take place well below the temperatures for self-diffussion, one agrees with self-diffusion, and one occurs at temperatures well above those for self-diffusion. The present work serves to explore in greater detail the two low-temperature processes. It is shown that the first, which is found in -Al2O3, Al(OH)3, and γ-Al2O3beginning at about 100° C, is consistent with a range of ΔH's of 28 to 50 kcal/mole. The mechanism of the process is hinted at by the fact that it overlaps the temperatures both for Al(OH)3decomposition and for point-defect motion in -Al2O3; the correlation with point defects is believed, however, to be the more significant. The second process, which is found only in -Al2O3 beginning at 500–650° C, implies an essentially single ΔH lying between 69 and 79 kcal/mole. It was suggested previously by Matzke and Whitton on the basis of electron diffraction that the process could be attributed to the amorphous-crystalline transition of -Al2O3. Further aspects of low-temperature diffusion in Al2O3 were revealed by comparing autoradiographs of specimens of -A2O3which were bombarded to various doses and then either heated to 850° C or immersed in unheated 12N NaOH. Thus regions exposed to a high dose and which would be expected to be amorphous, had an increased sticking factor, a greater tendency to lose gas during heating, and an enhanced chemical reactivity.  相似文献   

13.
设计了一种具有良好中子屏蔽能力、高强度及高韧性的新型中子屏蔽材料,用于吸收核电站乏燃料储存格架和乏燃料运输过程中的热中子辐射。材料通过蒙特卡罗粒子传输(输运)软件MCNP进行设计,并通过放电等离子烧结设备及热轧的方式制成了板材。MCNP模拟结果及材料热中子屏蔽测试结果表明:铝基Gd2O3复合材料的热中子屏蔽性能与铝基碳化硼相当。Gd2O3颗粒球磨后呈现μm、亚μm级甚至有些颗粒达到了nm级。随球磨时间的增加,材料的力学性能逐渐增强。X射线衍射检测发现了钆-铝合金相的生成。经TEM分析表明:材料的强化机制主要是位错强化和nm级Gd2O3颗粒的弥散强化,拉伸强度和伸长率分别达到了240 MPa和16%,其断口主要为韧性断裂。  相似文献   

14.
A comprehensive review of the neutron-induced cross-sections for (n,3He) reactions has been made for the interval of 14⩽Z⩽84 around 14 MeV neutron energy. For practical purposes, an empirical expression has been found by using the experimental (n,3 He) cross section values as a function of (N-Z) and (En-Eth) where (N-Z) is the neutron excess of the target nucleus, En and Eth are the incident neutron energy and the (n,3He) threshold energy, respectively. The derived empirical relation gives a good fit with the experimental values  相似文献   

15.
目前国际99Mo面临供应危机,急需新技术和新反应堆。医用同位素生产堆是以235UO2(NO3)2溶液为燃料的专用反应堆,生产成本低、三废少、经济效益高。本工作利用Al2O3为分离材料,从模拟的医用同位素生产堆(MIPR)燃料溶液中分离和纯化Mo。结果表明,经两次分离,Mo的总回收率大于 60%, U、Sr、Cs、I等杂质可以被除去,采用Al2O3从MIPR燃料溶液中提取99Mo工艺可行。  相似文献   

16.
以P_(2)O_(5)-Fe_(2)O_(3)-Al_(2)O_(3)-Na_(2)O四元玻璃作为基础,掺入x=6%(摩尔分数)的ZrO_(2),改变基质玻璃的Fe/P摩尔比(r(Fe/P)),采用熔淬法制备一系列玻璃陶瓷样品,研究含ZrO_(2)的玻璃陶瓷结构和化学稳定性随Fe/P摩尔比的变化。X射线衍射用于物相分析,拉曼光谱、X射线光电子能谱和穆斯堡尔谱用于结构分析。Fe/P摩尔比小于0.18时,样品中Fe^(3+)的相对含量(n(Fe^(3+))/(n(Fe^(2+))+n(Fe^(3+)))摩尔比)随着r(Fe/P)增加而增多;r(Fe/P)介于0.18~0.32时,n(Fe^(3+))/(n(Fe^(2+))+n(Fe^(3+)))在60%左右波动。r(Fe/P)介于0.2~0.3时,样品的化学稳定性最好。  相似文献   

17.
A study on neutronics design of a gadolinia (Gd2O3) bearing mixed-oxide (MOX) fuel assembly (MOX-UO2 (Gd2O3) assembly) was performed for the purpose of suppressing the use of fresh lumped burnable poison rods (BPRs). The MOX-UO2 (Gd2O3) assembly investigated consists of MOX and UO2 (Gd2O3) fuel rods, which have already been verified through both fabrication and irradiation experiences. In all, 16 UO2 (10 wt% Gd2O3) fuel rods are located at every corner and the peripheral region of the MOX-UO2 (Gd2O3) assembly in order to reduce the power peaking of MOX fuel rods due to the thermal neutron inflow, and to reduce the reactivity penalty at the end of cycle (EOC). Since fresh BPRs are not expected to be inserted and UO2 (Gd2O3) fuel rods are located at every corner of the assembly, the number of splits in plutonium (Pu) content can be only two, which is less than three splits required for a standard MOX assembly. Core characteristics of an equilibrium core loaded with MOX-UO2 (Gd2O3) assemblies are evaluated and it is verified that adoption of the MOX-UO2 (Gd2O3) assembly is effective to avoid the use of fresh BPRs with securing both the core safety and cycle length. The simplication of the splits in Pu content is also supposed to be beneficial, since it has the possibility of reduce MOX fuel fabrication costs.  相似文献   

18.
研究了Na2O/Al2O3摩尔比(n)对模拟高放废液硼硅酸盐玻璃固化体结构和性能的影响。利用红外光谱分析了不同Na2O/Al2O3摩尔比时硼硅酸盐玻璃固化体的结构变化,并用溶解速率法(DR)和全谱直读等离子发射光谱(ICP-OES)表征了所制备出固化体的化学稳定性。结果表明:在研究组分范围内,当n1.0时,硼硅酸盐玻璃固化体结构中Al以[AlO4]四面体的形式存在,但[BO3]三角体的量较大;随着Na2O/Al2O3摩尔比的增加(n=1.0),固化体结构中[BO3]三角体向[BO4]四面体转变,Al仍以[AlO4]四面体的形式存在,固化体结构稳定性增加;Na2O/Al2O3摩尔比继续增加(n=1.5或2.0),固化体成分中由于Al含量已很少而使[AlO4]含量过少,对固化体结构网络致密性的影响起主要作用,且此时成分中存在过多的碱金属离子在结构中起断网作用,玻璃固化体网络结构变疏松。在Na2O/Al2O3摩尔比为1.0时,玻璃固化体有相对较佳的结构稳定性和化学稳定性,浸泡56d后的失重速率为10-9 g/(cm2·min)数量级,且浸出液中各浸出离子的平均浓度最低。  相似文献   

19.
Two prethinned spinel specimens containing either Y0.15Zr0.85O2 or Ce0.5Zr0.5O2 particles were implanted with 200–400 keV Xe ions at 873 K using the IVEM-Tandem Facility at Argonne National Laboratory. In situ transmission electron microscopy (TEM) was conducted during the implantation in order to follow the evolution of the microstructure. At an ion fluence between 2.4x1020 to 3x1020 m−2 (up to 50 dpa and 4.7 at %), large Xe bubbles of 50–100 nm developed at the boundaries of the small oxide particles, while a high density of dislocation loops (up to 8 nm in diameter) and much smaller bubbles (up to 4 nm in diameter) formed in the spinel matrix. No large bubbles were observed at the boundaries between the spinel grains. These results suggest that the boundaries between spinel and oxide particles are preferred sites for fission gas accumulation.  相似文献   

20.
In this work, the plastic of polylatic acid(PLA) film is coated by alumina(Al_2O_3)through dielectric barrier discharge plasma assisted atomic layer deposition(DBD PA-ALD) for the proposal of the barrier property enhancement. The influence of ALD Al_2O_3 thickness on properties of barrier, mechanical, optical and degradation is investigated in detail. It is obtained that the growth rate of Al_2O_3 in DBD PA-ALD is as quick as 0.12 nm/cycle. After coated~40 nm Al_2O_3, the water vapor transmission rate of PLA is reduced by two orders of magnitude.Additionally, it is noticed that the tension strength of the coated film is improved slightly,whereas the light transmission rate is decreased with the increase of Al_2O_3 thickness. The degradation test shows that Al_2O_3 coating almost does not affect the self-degradation rate of PLA film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号