首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Ar/C_2H_5OH plasma jet is generated at atmospheric pressure by 33 MHz radio-frequency power source. This RF excitation frequencies which are higher than 13.56 MHz had rarely been used in atmospheric pressure plasma. The plasma characteristics of ethanol are investigated. The introduction of ethanol leads to the generation of four excited carbonaceous species C, CN, CH and C_2 in plasma, respectively. Optical emission intensities of four carbonaceous species were strengthened with ethanol content increasing in the range of 0-4600 ppm. The ethanol content increase results in all the Ar spectra lines decrease. The reason is that the electron temperature decreases when ethanol content is high. The emission intensity ratios of C/C_2, CN/C_2 and CH/C_2 decrease with the increase of ethanol content, showing that the relative amount of C_2 is increasing by increasing the ethanol flow. The emission intensity ratios of excited species did not change much with the increase of RF power in stable discharge mode.  相似文献   

2.
A 2D axial symmetry fluid model is applied to study the features of an atmospheric-pressure argon (Ar) plasma jet propagating into ambient nitrogen (N2) driven by a pulsed voltage, emphasizing the influence of gas velocity on the dynamic characteristics of the jet. The results show that the Ar jet exhibits a cylindrical-shaped channel and the jet channel gradually shrinks with the increase in propagation length. The jet propagation velocity varies with time. Inside the dielectric tube, the plasma jet accelerates propagation and reaches its maximum value near the nozzle. Exiting the tube, its velocity quickly decreases and when approaching the metal plane, the decrease in jet velocity slows down. The increase in gas speed results in the variation of jet spatial distribution. The electron density presents a solid structure at lower gas flow speeds, whereas an annular structure can be observed under the higher gas flow velocity in the ionization head. The jet length increases with the flow velocity. However, when the flow velocity exceeds a critical value, the increase in the rate of the plasma jet length slows down. In addition, the gas velocity effect on the generation and transport of the reactive particles is also studied and discussed.  相似文献   

3.
In the present study, a coaxial transmission line resonator is constructed, which is always capable of generating cold microwave plasma jet plumes in ambient air in spite of using argon, nitrogen, or even air, respectively. Although the different kinds of working gas induce the different discharge performance, their ionization processes all indicate that the ionization enhancement has taken place twice in each pulsed periods, and the electron densities measured by the method of microwave Rayleigh scattering are higher than the amplitude order of 1018 m−3. The tail region of plasma jets all contain a large number of active particles, like NO, O, emitted photons, etc, but without O3. The formation mechanism and the distinctive characteristics are attributed to the resonance excitation of the locally enhanced electric fields, the ionization wave propulsion, and the temporal and spatial distribution of different particles in the pulsed microwave plasma jets. The parameters of plasma jet could be modulated by adjusting microwave power, modulation pulse parameters (modulation frequency and duty ratio), gas type and its flow rate, according to the requirements of application scenarios.  相似文献   

4.
Ar/CH3OH and Ar/N2/CH3OH plasma jets were generated at atmospheric pressure by dual-frequency excitations. Two different cases were studied with focus laid on the generation of CN radicals. In one case Ar gas passed through a bubbler with saturated methanol steam but without addition of N2 (Ar/CH3OH plasma). In the other case N2 passed through the bubbler with saturated methanol steam (Ar/N2/CH3OH plasma). The optical emission lines of CN radicals have been observed in these two cases of plasma discharges. The addition of N2 can significantly increase the optical emission intensity of CN bands.  相似文献   

5.
An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 to 440 ºK, even when the vol. % oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 1017/cm3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.  相似文献   

6.
In this study an atmospheric pressure Ar/O_2 plasma jet is generated to study the effects of applied voltage and gas flux rate to the behavior of discharge and the metal surface cleaning.The increase in applied voltage leads to increases of the root mean square(rms) current,the input power and the gas temperature.Furthermore,the optical emission spectra show that the emission intensities of metastable argon and atomic oxygen increase with increasing applied voltage.However,the increase in gas flux rate leads to a reduction of the rms current,the input power and the gas temperature.Furthermore,the emission intensities of metastable argon and atomic oxygen decrease when gas flux rate increases.Contact angles are measured to estimate the cleaning performance,and the results show that the increase of applied voltage can improve the cleaning performance.Nevertheless,the increase of gas flux rate cannot improve the cleaning performance.Contact angles are compared for different input powers and gas flux rates to search for a better understanding of the major mechanism for surface cleaning by plasma jets.  相似文献   

7.
An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process.  相似文献   

8.
Recently, low-temperature atmospheric pressure plasmas have been proposed as a potential type of ‘reaction carrier' for the conversion of methane into value-added chemicals. In this paper, the multi-physics field coupling software of COMSOL is used to simulate the detailed discharge characteristics of atmospheric pressure methane-air plasma. A two-dimensional axisymmetric fluid model is constructed, in which 77 plasma chemical reactions and 32 different species are taken into account. The spatial density distributions of dominant charged ions and reactive radical species, such as CH_4~+CH_3~+N_2~+O_2~+H, O, CH_3, and CH_2, are presented, which is due to plasma chemical reactions of methane/air dissociation(or ionization) and reforming of small fragment radical species. The physicochemical mechanisms of methane dissociation and radical species recombination are also discussed and analyzed.  相似文献   

9.
In this work, an Ar plasma jet generated by an AC-microsecond-pulse-driven dielectric barrier discharge reactor, which had two ring-shaped electrodes isolated from the ambient atmosphere by transformer oil, was investigated. By special design of the oil insulation, a chemically active Ar plasma jet along with a safe and stable plasma process as well as low emission of CO and NOx were successfully achieved. The results indicated that applied voltage and frequency were basic factors influencing the jet temperature, discharge power, and jet length, which increased significantly with the two operating parameters. Meanwhile, gas velocity affected the jet temperature in a reverse direction. In comparison with a He plasma jet, the Ar plasma jet had relatively low jet temperature under the same level of the input parameters, being preferable for bio-applications. The Ar plasma jet has been tested to interact with human skin within 5 min without the perception of burnt skin and electrical shock.  相似文献   

10.
The Ar atmospheric pressure plasma was found to be an excellent laboratorial source for green aurora emission. However, the characteristic and production mechanism of the green aurora emission of the Ar atmospheric pressure plasma are still not clear. In this work, an Ar plasma in a long glass tube which emits intense green aurora light is investigated. With the long glass tube, it can be concluded that the green aurora emission in the Ar plasma is not owing to the mixture of Ar plasma plume with the surrounding air. It is also found that the green aurora emission often appeared beyond the active electrode when the active electrode is placed at the downstream of the gas flow. The green emission disappears when the traces amount of O2 or N2 (about 0.05%–0.07%) is added to Ar. This is because the O2 molecules deactivate the upper state O(1S), which results in the decrease of the green emission. On the other hand, when N2 is added, Ar metastable atoms are quenched by N2, which results in the decrease of O atoms and eventually leads to the decrease of the green emission intensity. The intensity of the green aurora emission increases when the driving voltage frequency increases from 1 to 10 kHz. More importantly, it is found that the green aurora emission is not affected when a grounded stainless steel needle is in contact with the plasma plume. Thus, the green emission is not driven electrically. All these findings are helpful for the understanding of the physics and its applications of atmospheric pressure plasma jet in space physics, laser physics and other application areas.  相似文献   

11.
A high growth rate fabrication of diamond-like carbon(DLC)films at room temperature was achieved by helicon wave plasma chemical vapor deposition(HWP-CVD)using Ar/CH_4gas mixtures.The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy.The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe.The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed.The growth rate of the DLC films reaches a maximum value of 54μm h~(-1)at the CH_4flow rate of 85 sccm,which is attributed to the higher plasma density during the helicon wave plasma discharge.The CH and H_αradicals play an important role in the growth of DLC films.The results show that the H_αradicals are beneficial to the formation and stabilization of C=C bond from sp~2to sp~3.  相似文献   

12.
《等离子体科学和技术》2019,21(11):115501-67
The use of atmospheric rotating gliding arc(RGA) plasma is proposed as a facile, scalable and catalyst-free approach to synthesizing hydrogen(H_2) and graphene sheets from coalbed methane(CBM). CH_4 is used as a CBM surrogate. Based on a previous investigation of discharge properties, product distribution and energy efficiency, the operating parameters such as CH_4 concentration, applied voltage and gas flow rate can effectively affect the CH_4 conversion rate,the selectivity of H_2 and the properties of solid generated carbon. Nevertheless, the basic properties of RGA plasma and its role in CH_4 conversion are scarcely mentioned. In the present work, a 3D RGA model, with a detailed nonequilibrium CH_4/Ar plasma chemistry, is developed to validate the previous experiments on CBM conversion, aiming in particular at the distribution of H_2 and other gas products. Our results demonstrate that the dynamics of RGA is derived from the joint effects of electron convection, electron migration and electron diffusion, and is prominently determined by the variation of the gas flow rate and applied voltage. Subsequently,a combined experimental and chemical kinetical simulation is performed to analyze the selectivity of gas products in an RGA reaction, taking into consideration the formation and loss pathways of crucial targeted substances(such as CH_4, C_2H_2, H_2 and H radicals) and corresponding contribution rates. Additionally, the effects of operating conditions on the properties of solid products are investigated by scanning electron microscopy(SEM) and Raman spectroscopy. The results show that increasing the applied voltage and decreasing CH_4 concentration will change the solid carbon from its initial spherical structure into folded multilayer graphene sheets, while the size of the graphene sheets is slightly affected by the change in gas flow rate.  相似文献   

13.
Herein we report the successful preparation of silver (Ag)-decorated vertically oriented graphene sheets (Ag/VGs) via helicon wave plasma chemical vapor deposition (HWP-CVD) and radiofrequency plasma magnetron sputtering (RF-PMS). VGs were synthesized in a mixture of argon and methane (Ar/CH4) by HWP-CVD and then the Ag nanoparticles on the prepared VGs were modified using the RF-PMS system for different sputtering times and RF power levels. The morphology and structure of the Ag nanoparticles were characterized by scanning electron microscopy and the results revealed that Ag nanoparticles were evenly dispersed on the mesoporous wall of the VGs. X-ray diffraction results showed that the diameter of the Ag particles increased with the increase in Ag loading, and the average size was between 10.49 nm and 25.9 nm, consistent with the transmission electron microscopy results. Ag/VGs were investigated as effective electrocatalysts for use in an alkaline aqueous system. Due to the uniquely ordered and interconnected wall structure of VGs, the area of active sites increased with the Ag loading, giving the Ag/VGs a good performance in the oxygen evolution reaction. The double-layer capacitance (Cdl) of the Ag/VGs under different Ag loadings were studied, and the results showed that the highest Ag content gave the best Cdl (1.04 mF cm−2). Our results show that Ag/VGs are likely to be credible electrocatalytic materials.  相似文献   

14.
以金刚石膜/硅复合材料作为基板.运用微加工技术在金刚石膜/硅衬底上光刻铬/金微条电极.制成了流气式微条气体室探测器。在室温及101.0kPa下,使用微机多道能谱仪及辅助电子学设备在5.9keV^55FeX射线辐照下测量了微条气体室探测器在不同电压下的能谱响应和脉冲信号。结果表明微条气体室探测器具有较高的信噪比,计数率≥10^3Hz,当混合工作气体Ar:CH4=90:10、漂移电压-1000V、阴极电压-650V、阳极0V时,能量分辨率达12.3%。  相似文献   

15.
Non-thermal C/H/Ar plasmas are widely applied to carbonaceous material production and processing.In this work,plasma parameters and gaseous species of the atmospheric non-thermal C/H/Ar plasmas produced by an atmospheric-pressure DC arc discharge generator in CH_4/Ar were investigated.The voltage-current characteristics were measured for different CH_4/Ar ratios.Optical emission spectroscopy was employed to analyze the electron excitation temperature,gas temperature and electron density under various discharge conditions.The hydrocarbon molecules produced in the CH_4/Ar plasmas were detected with photoionization mass spectrometry.The optical spectral results demonstrated that the electron excitation temperature was 0.4-1 eV,the gas temperature was 2800-4200 K and the electron density was in the range of(5-20)×10~(15) cm~(-3).The mass spectrum indicated that a variety of unsaturated hydrocarbons(C_2H_4,C_3H_6,C_6H_6,etc.) and several highly unsaturated hydrocarbons(C_4H_2,C_5H_6,etc.) were produced in the non-thermal arc plasmas.  相似文献   

16.
A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length,ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.  相似文献   

17.
Methane(CH4) plasma was used to produce amorphous hydrogenated carbon(aC:H) films by a single capacitively coupled radio frequency(RF) powered plasma system.The system consists of two parallel electrodes:the upper electrode is connected to 13.56 MHz RF power and the lower one is connected to the ground.Thin films were deposited on glass slides with different sizes and on silicon wafers.The influence of the plasma species on film characteristics was studied by changing the plasma parameters.The changes of plasma species during the deposition were investigated by optical emission spectroscopy(OES).The structural and optical properties were analyzed via Fourier transform infrared(FTIR) spectroscopy,X-ray diffraction(XRD) and UV-visible spectroscopy,and the thicknesses of the samples were measured by a profilometer.The sp~3/sp~2 ratio and the existing H atoms play a significant role in the determination of the chemical properties of thin films in the plasma.The film quality and deposition rate were both increased by raising the power and the flow rate.  相似文献   

18.
A non-equilibrium atmospheric pressure argon(Ar) plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy(OES), and theoretically by collisional-radiative(CR) model. More specifically, the electron temperature and electron density of plasma are obtained directly by the laser Thomson scattering, the gas temperature is measured by laser Raman scattering, the optical emissions of excited Ar states of plasma are measured by OES. The laser scattering results show that the electron temperature is about 1 eV which is similar to that excited by 60 Hz AC power, but the gas temperature is as low as 300 K compared to about 700 K excited by 60 Hz AC power. It is shown that the microsecond pulsed power supply, rather than nanosecond ones, is short enough to reduce the gas temperature of atmospheric pressure plasma to near room temperature. The electron temperature and electron density are also obtained by CR model based on OES, and find that the intensities of the optical emission intensity lines of 727.41, 811.73, 841.08, 842.83, 852.44 and 912.86 nm of Ar can be used to characterize the behavior of electron density and electron temperature, it is very useful to quickly estimate the activity of the atmospheric pressure Ar plasma in many applications.  相似文献   

19.
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N_2 and O_2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(H_β)was used to estimate the electron density nein the jets.For both He/N_2 and He/O_2 jets, newas estimated to be on the order of 10~(15)cm~(-3).The effects of plasma power and gas flow rate were also studied.With increase in N_2 and O_2 flow rates, netended to decrease.Gas temperature in the He/O_2 plasma jets was elevated compared to the temperatures in the pure He and He/N_2 plasma jets.The highest OH densities in the He/N_2 and He/O_2 plasma jets were determined to be 1.0?×10~(16)molecules/cm~3 at x?=?4 mm(from the jet orifice)and 1.8?×?10~(16)molecules/cm~3 at x=3 mm, respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N_2~+ bands in both He/N_2 and He/O_2 plasma jets, as against the absence of the N_2~+ emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N_2~+ in these He plasma jets.  相似文献   

20.
利用发射光谱(Optical emission spectroscopy,OES)对感应耦合等离子体增强化学气相沉积(Inductivelycoupled plasma enhance chemical vapor d印osition,ICPECVD)类金刚石(Diamondlike carbon,DLC)膜过程中的各种基团进行分析,并对不同条件下薄膜沉积速率以及薄膜显微硬度进行测试.分析结果发现,感应耦合等离子体源激发甲烷等离子体中存在比较突出的碳氢离子成分,从而促进形成高硬度的DLC膜.而且射频功率、沉积气压等沉积参数的变化对DLC薄膜沉积过程的中性基团、离子基团以及原子氢等成分都有着明显影响,从而最终影响薄膜沉积过程及薄膜性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号