首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
在垂直环形窄缝流道中的沸腾传热特性研究   总被引:5,自引:0,他引:5  
为了弄清在窄缝环形流道中气泡的形成、聚合和变形的特性 ,以及气泡在聚合变形之后对传热特性的影响 ,在常压下用蒸馏水对窄缝间隙为 0 75mm的垂直环形流道 ,进行了可视化的流动沸腾传热实验研究 ;实验段的有效加热长度为 90 0mm ,其加热方式为单面内侧加热 ,实验的流量变化范围为 1 667× 1 0 - 5m3/s至 5 833× 1 0 - 5m3/s。实验得到了在不同质量流密度和热流密度下窄缝流道中的沸腾传热系数随干度变化的分布。通过与常规流道中的沸腾传热系数的比较 ,得到了在窄缝环形流道中沸腾传热系数比常规流道中的沸腾传热系数约高 1 5 %的结论。另外通过用高速摄像机对可视化的垂直环形流道中的流型进行的拍摄研究 ,分清了存在在窄缝环形流道中的四种流型  相似文献   

2.
对双面加热环形窄缝通道内单相流动换热进行分析研究,提出了理论预测模型.基于该模型,对窄缝宽度分别为1.0、1.5、2.0 mm的环形通道单相湍流流动换热系数进行了理论计算,并与实验结果进行了对比,理论预测值与实验结果符合较好.研究表明:内外加热热流密度比对环形窄缝通道内的湍流流动换热过程有显著影响,在双面加热情况下,窄缝对流动换热过程强化与否,取决于内外管加热热流密度比及流动状态,即Re大小.  相似文献   

3.
适于窄缝流动沸腾传热的关系式   总被引:8,自引:2,他引:6  
由于受窄缝间隙几何尺寸的限制,在加热的窄缝流道中沸腾气泡随着其长大和流动将受挤而变形,聚合,其表面张力的作用将大幅度改变,本文通过引入Bond无量纲数来考察窄缝流道的窄缝几何效应和气泡表面张力作用,修正了Chen沸腾传热关系式,并提出了相应的窄缝流动沸腾传热计算的关系式,通过与实验数据的验证比较,修正Chen沸腾传热关系式的计算结果与实验结果比较吻合,因此,该关系式能够用来预测在单面加热窄缝 道中的两相沸腾传热系数。  相似文献   

4.
对窄缝为2.1mm的同心环形管,试验研究了外管加热条件下水的沸腾两相流动阻力与传热特性,得到了以下结果:窄缝环形管内两相流动的阻力较普通圆管内大,沸腾换热得到了较明显的强化,换热系数弓压力、热平衡干度、工质流量、加热负荷均有关系,且与缝隙宽度和加热方式有关;提出了环形管强化传热的微液膜蒸发机理与汽泡扰动机理的物理解释;得到了环形管内流动摩擦阻力系数与传热系数的实验关联式。  相似文献   

5.
对面朝下加热水平窄缝内多孔介质的传热特性进行了实验研究,得到了不同工况下的沸腾曲线.通过比较各工况下的沸腾曲线得出:多孔介质的存在大幅提高了面朝下加热水平窄缝内传热的换热系数,尤其是沸腾段的换热得到了很大程度的强化;提高窄缝宽度,选用热导率高的固体微粒制作多孔介质等可提高多孔介质的换热能力.根据多孔介质传热的机理,拟合出了面朝下加热水平窄缝内多孔介质的自然对流传热与核态沸腾传热关联式.  相似文献   

6.
矩形窄流道内汽泡生长会直接改变相界面浓度,从而影响流道的传热传质性能。为获得适用于窄流道内不同类型的汽泡生长模型,基于通体可视的实验本体,开展壁面沸腾流动换热实验。基于传热能量方程,研究过冷沸腾中汽泡滑移与冷凝前期两种情况下汽泡生长模型。实验结果表明汽泡呈现两种形式的生长,即汽泡滑移生长以及冷凝前期生长。建立了两种情况下的汽泡生长模型,实验数据验证模型误差在20%以内。因此,本研究能为沸腾两相数值模拟提供更加精细化的汽泡生长模型,从而提高汽泡行为的预测精度。  相似文献   

7.
常压下窄缝池沸腾实验   总被引:2,自引:0,他引:2  
介绍对竖直矩形窄通道进行的池沸腾实验研究。对四种不同的通道尺寸,分单面加热和双面加热共进行了8组实验工况。通过可视化观测和测量数据处理,得到如下结论:在窄缝中,汽泡生长受到空间尺寸限制,沸腾区压力有别于一般情况下的沸腾;矩形窄缝对沸腾有强化作用;双面加热情况下,过热度明显减小。  相似文献   

8.
倾斜限制空间内池式沸腾流型特性研究   总被引:2,自引:1,他引:1  
文青龙  陈军  赵华 《核动力工程》2011,32(1):104-107,121
以去离子水为工质,在大气压下针对倾斜矩形结构开展了倾斜窄缝空间内池式沸腾汽泡行为的可视化试验研究.加热表面倾角从0°变化到30°,矩形窄缝尺寸从3 mm变化到8 mm.研究表明,窄缝结构和加热表面下朝向是产生"孤立变形汽泡"、"聚合变形汽泡"和"局部干涸"等3种流型的主要原因.以无量纲热流密度数Q和窄缝尺寸与汽泡脱离直...  相似文献   

9.
在压力0.84~6.09 MPa、质量流速41.9~300.2 kg/(m2·s)、热流密度2.61~114.41 kw/m2范围内,以去离子水为工质,对间隙为1.5 mm环形窄通道实验段竖直向上流动的欠热沸腾传热特性进行了实验研究,得出了适用环形窄缝通道的欠热沸腾传热经验关系式。  相似文献   

10.
采用高速摄像仪对矩形窄缝通道内过冷流动沸腾滑移汽泡直径沿轴向分布特性进行可视化实验研究。实验捕获滑移汽泡沿加热面滑移并聚合的过程图像,并获得沿加热面轴向300、400、500 mm处滑移汽泡直径概率分布图。实验研究表明,窄缝通道中滑移汽泡直径沿轴向分布呈增大趋势;滑移汽泡沿加热面生长、滑移汽泡与未完成生长脱离的小汽泡的聚合,以及滑移汽泡间的聚合是滑移汽泡直径沿加热面轴向增大的重要原因。  相似文献   

11.
以去离子水为工质,在进口压力为0.1~0.3 MPa、质量流速为200~1400 kg?m-2?s-1、热流密度为20~320 kW?m-2的参数范围内,对截面参数为50 mm×2 mm的竖直矩形窄缝通道展开了传热实验研究。实验获得通道内部工质由单相状态到过冷沸腾状态的传热过程曲线,将过冷沸腾段实验值与8个经验公式提供的预测值进行了对比与分析,采用相似原理以及回归分析法,建立了适用于竖直矩形窄缝通道的过冷沸腾准则关系式。研究结果表明,在竖直矩形窄缝通道内,热流密度对过冷沸腾传热具有主导作用;对于本实验的窄缝通道,Bertsch传热公式对于过冷沸腾段的预测效果相较于其他公式更好,本研究所建立的准则关系式与实验数据符合良好。因此,本研究建立的公式能够用于竖直矩形窄缝通道过冷沸腾传热系数的预测。   相似文献   

12.
To clarify the relation between the liquid–vapor behavior and the heat transfer characteristics in the boiling phenomena, the structures of transparent heaters were developed for both flow boiling and pool boiling experiments and were applied to the microgravity environment realized by the parabolic flight of aircraft. In the flow boiling experiment, a transparent heated tube makes the heating, the observation of liquid–vapor behavior and the measurement of heat transfer data simultaneously possible. The heat transfer coefficient in the annular flow regime at moderate quality has distinct dependence on gravity provided that the mass velocity is not so high, while no noticeable gravity effect is seen at high quality and in the bubbly flow regime. The measured gravity effect was directly related to the behavior of annular liquid film observed through the transparent tube wall. In the pool boiling experiment, a structure of transparent heating surface realizes both the observation of the macrolayer or microlayer behavior from underneath and the measurements of local surface temperatures and the layer thickness. It was clarified in the microgravity experiments that no vapor stem exists but tiny bubbles are observed in the macrolayer underneath a large coalesced bubble at high heat flux. The heat flux evaluated by the heat conduction across the layer assumes less than 30% of the total to be transferred. The evaporation of the microlayers underneath primary bubbles just after the generation dominates the heat transfer in the microgravity, not only in the isolated bubble region but also in the coalesced bubble region.  相似文献   

13.
以40 mm×2 mm窄矩形通道中流动沸腾换热实验数据为基础,分析影响充分发展沸腾起始(FDB)点位置及换热系数的主要因素,并将实验值和计算值进行对比。FDB点实验值与Bowring模型和Saha-Zuber模型的计算值符合良好,相对误差在20%以内。将实验得到的窄矩形通道换热系数与Chen公式、Gungor-Winterton关系式和Sun Licheng关系式的计算值进行比较,结果表明:应用在常规通道的Chen关系式已不再适用于窄矩形通道传热系数的计算,而考虑窄通道尺寸效应并认为热流密度在饱和沸腾中起主要作用的Sun Licheng关系式与实验值较接近,相对误差在30%以内。  相似文献   

14.
为深入分析沸腾两相流动振荡诱发沸腾临界的影响特性,本文以去离子水为工质,横截面19 mm×19 mm、中心为外径9.5 mm的单棒通道为研究对象,通过在不同热工参数下开展沸腾两相流动特性可视化实验研究,结合汽泡行为和汽-液界面特性,分析流动振荡诱发沸腾临界的影响特性。研究结果表明,低压力、低质量流速和低入口过冷度下,极易出现流动振荡,并导致沸腾临界提前发生,此时的临界热流密度与稳定工况下相比明显偏低;随着壁面热流密度不断增加,流道中两相流型先后出现泡状流、弹状流、合并弹状流、搅混流、剧烈搅混流、不稳定环状流;当流动出现剧烈振荡时,流道存在回流;发生沸腾临界时流道压降波动最大,对应的流型为不稳定环状流。因此,单棒通道内流动振荡可能会导致沸腾临界提前发生。   相似文献   

15.
王涛  王均  王小军 《核动力工程》2012,33(4):96-101
在中低压条件下,对矩形窄缝通道两相流动传热进行试验研究,分析两相流动传热的变化规律,拟合出饱和沸腾传热系数计算关系式,并采用简化的一维分析方法对两相压降进行分析计算。试验结果表明:在相同热平衡含汽率(x)情况下,两相流动压降随系统压力(p)的降低而增大,随系统流量的增大而增大的变化规律;p越低,两相流动压降随x的增加而增大越剧烈;流量越大,两相流动压降随x的增加而增大越剧烈。通过数据回归方法得到汽相湿周长比例因子F并拟合了计算关系式,其计算值与试验值符合得较好。矩形窄缝通道内饱和沸腾平均传热系数受p、质量流量及热流密度的影响较大。  相似文献   

16.
为探究低压低流速条件下的过冷沸腾换热特性,开展本实验研究。通过分析实验中采集的热工参数和可视化图像,探究了沸腾滞后现象、沸腾失稳现象以及沸腾换热特性。实验发现沸腾起始点壁面过热度较高,而沸腾的发生大幅提高了换热系数,因此出现了显著的沸腾滞后现象。实验中较为光滑的加热面可达到较高的过热度,而低压下快速产生的气泡尺寸较大,在较低的热流密度下气液界面发生剧烈变化,使气泡破裂为多个小气泡并成为核化点。在过冷沸腾换热系数的预测中,Dittus-Boelter对流换热关系式不再适用,采用Hallman关系式和Gnielinski关系式计算对流换热系数,并引入壁面过热度对池式沸腾换热系数进行修正,可使过冷沸腾换热系数的预测精度大幅提高。  相似文献   

17.
对竖直环形狭缝通道内环状流流动沸腾传热理论模型进行了分析,以液膜质量、动量和能量守恒方程为基础,结合汽芯动量方程建立了竖直环形狭缝通道内环状流的数学物理模型。对该模型进行数值求解,得出了液膜厚度、液膜内的速度分布和温度分布、内—外管的换热系数以及通道内压降值,并与实验值进行了比较。  相似文献   

18.
在蒸发温度为5~15 ℃、热流密度范围为5~20 kW·m-2、工质质量流速变化范围为50~500 kg·m-2·s-1和干度范围为0.01~0.9的条件下,对R134a在卧式螺旋管内的沸腾两相流型及传热特性进行了实验研究。利用可视化技术对流型进行了观察分析,发现在相同工况条件下,卧式螺旋管上升段和下降段的流型有所不同,特别是形成环状流之前存在明显不同的过渡流型,分别为波环状流型和超大气弹流型,因此,对上升段和下降段分别建立了流型图。获得了传热系数随工质的干度、质量流速和热流密度等参数的变化关系,发展了R134a在卧式螺旋管内流动沸腾传热系数的计算关联式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号