首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
在未来核聚变反应堆中,为补充氚的消耗,需要在核聚变堆的包层中进行氚的在线增殖,以维持核聚变反应的持续进行。为验证这一关键技术,在国际热核聚变实验堆(ITER)上开展了ITER TBM计划(实验包层项目)。作为ITER计划成员方之一,中方以中国氦冷固态增殖剂实验包层模块(HCCB TBM)概念参与ITER TBM计划。HCCB TBM现今进入初步设计阶段,而材料的制备技术和性能数据是支撑其结构设计、安全分析和服役工况评估的基础。本文综述和分析了HCCB TBM结构材料低活化铁素体/马氏体钢(RAFM钢)与功能材料氚增殖剂和中子倍增剂的研究现状,并对这些材料下一步的研究方向进行了展望。  相似文献   

2.
基于国际热核聚变实验堆(ITER)实验包层方案,提出了一个超临界水冷固态实验包层概念设计方案。设计采用Be作为中子倍增剂,Li4SiO4作为氚增殖剂,CLAM钢作为结构材料。包层第一壁采用多层盘道设计以提高第一壁出口温度,内部采用增殖剂与中子倍增剂分层布置以提高热沉积与氚增殖率。为验证包层设计的可行性,分析计算了三维包层氚增殖率与热沉积的分布,然后根据中子学计算得到的结果对超临界水冷固态实验包层进行了数值模拟研究。结果表明:包层功率密度分布较合理;氚增殖率满足运行中氚自持的要求;在冷却剂出口温度达到500℃条件下材料温度不超过限值。该设计方案能满足中子学设计与热工水力的要求。  相似文献   

3.
在未来核聚变反应堆中,为补充氚的消耗,需要在核聚变堆的包层中进行氚的在线增殖,以维持核聚变反应的持续进行。为验证这一关键技术,在国际热核聚变实验堆(ITER)上开展了ITER TBM计划(实验包层项目)。作为ITER计划成员方之一,中方以中国氦冷固态增殖剂实验包层模块(HCCB TBM)概念参与ITER TBM计划。HCCB TBM现今进入初步设计阶段,而材料的制备技术和性能数据是支撑其结构设计、安全分析和服役工况评估的基础。本文综述和分析了HCCB TBM结构材料低活化铁素体/马氏体钢(RAFM钢)与功能材料氚增殖剂和中子倍增剂的研究现状,并对这些材料下一步的研究方向进行了展望。  相似文献   

4.
氦冷固态增殖剂包层是中国聚变工程实验堆(CFETR)的3种候选包层概念之一。本文基于中国核工业西南物理研究院提出的一种氦冷固态增殖剂包层概念,通过蒙特卡罗输运程序MCNP5建立了包层三维中子学模型,探究了不同几何布置方案及结构设计参数对包层产氚性能的影响,得到了全堆氚增殖比(TBR)及极向各包层模块产氚分布,并由优化后的模型得到了包层模块核热分布。结果表明,优化后的TBR达到1.177,满足氚自持的最低要求。  相似文献   

5.
增殖包层作为中国聚变工程实验堆(China Fusion Engineering Test Reactor,CFETR)的核心部件,承载着能量转换和氚增殖的重要作用。中国科学院等离子体物理研究所在之前增殖包层设计的基础上,又提出了氦冷陶瓷增殖(Helium Cooled Ceramic Breeder,HCCB)包层的概念设计。为评估电磁载荷对HCCB包层结构安全性的影响,借助通用有限元软件ANSYS,研究计算了在等离子体主破裂时包层中产生的感应涡流、洛伦兹力和力矩。通过多物理场耦合分析方法,获取了包层中产生的等效应力和形变位移。结果表明,在等离子体电流指数衰减时,HCCB包层模型上产生的最大等效应力和形变位移满足包层结构设计的要求,同时模拟分析结果也为未来的包层结构优化以及支撑结构设计提供了必要的数据支撑。  相似文献   

6.
本文设计了一种高氚增殖比包层(HBRB),该包层采用多孔U-10Zr合金作为中子倍增剂,Li4SiO4球床作为增殖剂,低活化马氏体(RAFM)钢作为结构材料。在详细研究包层加工工艺、流量分配、中子性能等问题的基础上,完成了包层内部详细结构设计。利用中子学软件分析计算了包层的氚增殖比(TBR)和热沉积分布,并根据计算结果对包层进行热力耦合分析。结果表明:包层TBR较高,且核性能稳定;冷却剂的流量分配情况和压降合理;包层内各组件冷却充分,温度和结构材料热应力不超过限值。  相似文献   

7.
实验包层模块(TBM)是聚变反应堆最重要的组件之一,作用是产氚和能量提取。锂陶瓷具有良好的化学稳定性、热机械性能、产氚性能以及可在更高温度下使用等特点,被认为是聚变堆包层最具吸引力的氚增殖剂材料。中国ITER-TBM设计方案采用了氦冷固态氚增殖剂(HCCB)TBM结构,其聚变环境下的辐照损伤行为可为中国HCCB TBM结构设计提供支持。针对固态氚增殖剂聚变中子辐照损伤问题,利用蒙特卡罗模拟,对比分析了Li_4SiO_4和Li_2TiO_3的中子辐照离位损伤和嬗变气体损伤。结果表明:在相同的服役时间下,Li_4SiO_4比Li_2TiO_3将产生更多的嬗变气体,且在高6 Li丰度情况下,其中子辐照损伤也更严重,会产生更高的损伤剂量和更大的损伤截面。但是,嬗变气体所造成的空位损伤Li_2TiO_3要比Li_4SiO_4严重;对两种陶瓷材料来讲,氦损伤效应均强于氚损伤效应。  相似文献   

8.
球谐函数有限元方法采用非结构网格求解中子输运方程,具备处理复杂几何的能力;同时又可避免离散纵标方法所造成的射线效应。本文从一阶中子输运方程出发,通过方程的弱形式推导了球谐函数多尺度有限元方法,并基于此方法开发了中子学分析程序NECP-FISH。通过在前后处理平台SALOME中开发接口程序,实现了程序的建模可视化和计算结果可视化。应用此程序计算了氦冷陶瓷包层,数值结果表明NECP-FISH对中子通量密度、氚增殖比和中子释热的计算结果与蒙特卡罗程序NECP-MCX吻合良好。氚增殖比相对偏差为0.56%,所有区域的中子释热偏差均在6%以内。  相似文献   

9.
为验证在中国先进研究堆(CARR)内进行国际热核聚变实验堆(ITER)氚增殖包层模块(TBM)辐照实验的可行性和安全性,进行了氚增殖剂球床组件堆内辐照物理及热工计算分析。氚增殖剂包层模块主要是固态氚增殖剂陶瓷球床。本文采用Monte Carlo粒子输运模拟程序对氚增殖剂球床进行堆内建模,计算球床的中子注量率、能量沉积和产额,得到不同功率下球床的中子注量率、发热功率和产氚速率以及球床组件引入反应堆的反应性。根据物理计算得到的组件各部件发热情况建立热工计算一维模型,通过更改反应堆功率得到满足实验要求的工况并采用三维程序进行验证。物理与热工计算分析的结果表明,在反应堆运行功率为20 MW的工况下球床组件各部件的温度均不超过限值。  相似文献   

10.
中国双功能锂铅包层(Dual Functional Lithium-Lead,DFLL)是由中国科学院合肥物质科学研究院核能安全技术研究所设计的用于聚变反应堆的液态包层.由于聚变反应堆氚增殖包层的设计高度依赖于中子计算,为验证DFLL包层设计中所使用的核数据库和仿真软件,建立了DFLL包层实验模块,并基于D-T聚变中子...  相似文献   

11.
Using the Monte Carlo transport code MCNP.neutronic calculation analysis for China helium cooled ceramic breeder test blanket module(CN HCCB TBM) and the associated shield block(together called TBM-set) has been carried out based on the latest design of HCCB TBM-set and C-lite model.Key nuclear responses of HCCB TBM-set.such as the neutron flux,tritium production rate,nuclear heating and radiation damage,have been obtained and discussed.These nuclear performance data can be used as the basic input data for other analyses of HCCB TBM-set,such as thermal-hydraulics,thermal-mechanics and safety analysis.  相似文献   

12.
India, under its breeding blanket R&D program for DEMO, is focusing on the development of two tritium breeding blanket concepts; namely the lead-lithium-cooled ceramic breeder and the helium-cooled ceramic breeder (HCCB). The study presented in this paper focuses on the neutronic design analysis and optimization from the tritium breeding perspective of the HCCB blanket. The Indian concept has an edge-on configuration and is one of the variants of the helium-cooled solid breeder blanket concepts proposed by several partner countries in ITER. The Indian HCCB blanket having lithium titanate (Li2TiO3) as the tritium breeder and beryllium (Be) as the neutron multiplier with reduced-activation ferritic/martensitic steel structure aims at utilizing the low-energy neutrons at the rear part of the blanket. The aim of the optimization study is to minimize the radial blanket thickness while ensuring tritium self-sufficiency and provide data for further neutronic design and thermal-hydraulic layout of the HCCB blanket. It is found that inboard and outboard blanket thicknesses of 40 cm and 60 cm, respectively, can give a tritium breeding ratio (TBR) >1.3, with 60% 6Li enrichment, which is assumed to be sufficient to cover potential tritium losses and associated uncertainties. The results also demonstrated that the Be packing fraction (PF) has a more profound impact on the TBR as compared to 6Li enrichment and the PF of Li2TiO3.  相似文献   

13.
China Fusion Engineering Test Reactor(CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO.One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2to ensure tritium self-sufficiency.A concept design for a water cooled ceramics breeding blanket(WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR.Based on this concept,a one-dimensional(1D) radial built breeding blanket was first designed,and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build.A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models,addressing neutron wall loading(NWL),tritium breeding ratio(TBR),fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components.The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design.  相似文献   

14.
The neutronic calculations and activation behavior of the proposed helium cooled ceramic breeder(HCCB) blanket were predicted for the Chinese Fusion Engineering Testing Reactor(CFETR) design model using the MCNP multi-particle transport code and its associated data library. The tritium self-sufficiency behavior of the HCCB blanket was assessed, addressing several important breeding-related arrangements inside the blankets. Two candidate first wall armor materials were considered to obtain a proper tritium breeding ratio(TBR). Presentations of other neutronic characteristics, including neutron flux, neutron-induced damages in terms of the accumulated dpa and helium production were also conducted. Activation, decay heat levels and contact dose rates of the components were calculated to estimate the neutron-induced radioactivity and personnel safety. The results indicate that neutron radiation is efficiently attenuated and slowed down by components placed between the plasma and toroidal field coil.The dominant nuclides and corresponding isotopes in the structural steel were discussed. A radioactivity comparison between pure beryllium and beryllium with specific impurities was also performed. After a millennium cooling time, the decay heat of all the concerned components and materials is less than 1?×?10-4 k W, and most associated in-vessel components qualify for recycling by remote handling. The results demonstrate that acceptable hands-on recycling and operation still require a further long waiting period to allow the activated products to decay.  相似文献   

15.
《Fusion Engineering and Design》2014,89(7-8):1119-1125
ITER will be used to test tritium breeding module concepts, which will lead to the design of DEMO fusion reactor demonstrating tritium self-sufficiency and the extraction of high grade heat for electricity production. China plans to test the HCCB TBM modules during different operation phases. Related design and R&D activities for each TBM module with the auxiliary system are introduced.The helium-cooled ceramic breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. The preliminary conceptual design of CN HCCB TBM has been completed. A modified design to reduce the RAFM material mass to 1.3 ton has been carried out based on the ITER technical requirement. Basic characteristics and main design parameters of CN HCCB TBM are introduced briefly. The mock-up fabrication and component tests for Chinese test blanket module are being developed. Recent status of the components of CN HCCB TBM and fabrication technology development are also reported. The neutron multiplier Be pebbles, tritium breeder Li4SiO4 pebbles, and structure material CLF-1 of ton-class are being prepared in laboratory scale. The fabrication of pebble bed container and experiment of tritium breeder pebble bed will be started soon. The fabrication technology development is proceeding as the large-scale mock-up fabrication enters into the R&D stage and demonstration tests toward TBM testing on ITER test port are being done as scheduled.  相似文献   

16.
India has proposed the helium-cooled solid breeder blanket concept as a tritium breeding module to be tested in ITER. The module has lithium titanate for tritium breeding and beryllium for neutron multiplication. Beryllium also enhances tritium breeding. A design for the module is prepared for detailed analysis. Neutronic analysis is performed to assess the tritium breeding rate, neutron distribution, and heat distribution in the module. The tritium production distribution in submodules is evaluated to support the tritium transport analysis. The tritium breeding density in the radial direction of the module is also assessed for further optimization of the design. The heat deposition profile of the entire module is generated to support the heat removal circuit design. The estimated neutron spectrum in the radial direction also provides a more in-depth picture of the nuclear interactions inside the material zones. The total tritium produced in the HCSB module is around 13.87 mg per full day of operation of ITER, considering the 400 s ON time and 1400 s dwell time. The estimated nuclear heat load on the entire module is around 474 kW, which will be removed by the high-pressure helium cooling circuit. The heat deposition in the test blanket model (TBM) is huge (around 9 GJ) for an entire day of operation of ITER, which demonstrates the scale of power that can be produced through a fusion reactor blanket. As per the Brayton cycle, it is equivalent to 3.6 GJ of electrical energy. In terms of power production, this would be around 1655 MWh annually. The evaluation is carried out using the MCNP5 Monte Carlo radiation transport code and FEDNL 2.1 nuclear cross section data. The HCSB TBM neutronic performance demonstrates the tritium production capability and high heat deposition.  相似文献   

17.
Thermal-hydraulic performance is a challenging issue in helium-cooled ceramic breeder (HCCB) blanket design due to the extremely complicated working environment and the strict limits of materials temperature. The heat loads deposited on the HCCB blanket comprises of severe surface heat flux from plasma and the volumetric nuclear heat from neutron irradiation, which can be exhausted by the built-in cooling channels of the components. High pressure helium with 8 MPa, distributed from the coolant manifolds is employed as coolant in the blanket. The design and optimization of the manifolds configuration was performed to guarantee the accurate flow control of helium coolant. The flow distribution in the coolant manifolds was investigated based on the structural improvement of manifolds aiming at overall uniform mass flow rates and better flow streamline distribution without obvious vortexes. The peak temperature of different functional materials in the blanket under normal operating condition is below allowable material limits. It is found that the components in the current blanket module could be cooled effectively under the intense thermal loads due to the updated design and optimization analysis of manifolds.  相似文献   

18.
The helium-cooled ceramic breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. Current progress on the design and R&D for Chinese helium-cooled ceramic breeder TBM (CN HCCB TBM) in China is presented. The main updated design and related R&D of CN HCCB TBM are introduced briefly. The mock-up fabrication and component tests for Chinese test blanket module are being carried out. Recent status of the components and fabrication technology development is also reported. The neutron multiplier Be pebbles, tritium breeder Li4SiO4 pebbles, and structure material CFL-1 are being prepared in the laboratory scale. The fabrication of 1/3 sized mock-up and construction of a He test loop are being carried out. The key technology development is proceeding to the large scale mock-up fabrication and demonstration tests toward on ITER testing.  相似文献   

19.
The Indian test blanket module(TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the RD activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices(ITER relevant and DEMO).The Indian Lead–Lithium Cooled Ceramic Breeder(LLCB) blanket concept is one of the Indian DEMO relevant TBM,to be tested in ITER as a part of the TBM program.Helium-Cooled Ceramic Breeder(HCCB) is an alternative blanket concept that consists of lithium titanate(Li_2TiO_3) as ceramic breeder(CB) material in the form of packed pebble beds and beryllium as the neutron multiplier.Specifically,attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions.These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号