首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermenta- tion. Response surface methodology (RSM) was used to optimize the discharge-associated pa- rameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply volt- age, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge- induced enhancement in ethanol yield were plasma exposure time of 1 rain, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control.  相似文献   

2.
The formation of homogeneous dielectric barrier discharge(DBD)in air is a key scientific problem and core technical problem to be solved for the application of plasmas.Here,we report the effect of two-dimensional(2D)nanomaterial Ti3C2Tx(Tx=-F,-O and/or-OH)on regulating the electrical discharge characteristics.The field emission and weak bound state property of Ti3C2Tx can effectively increase the seed electrons and contribute to the generation of atmospheric pressure homogeneous air DBD.The electron avalanche development for the uneven electrode structure is calculated,and the discharge mode transition is modeled.The comparative analyses of discharge phenomena validate the regulation of Ti3C2Tx on the discharge characteristics of DBD.The light emission capture and the voltage and current waveforms verify that the transition of Townsend discharge to streamer discharge is effectively inhibited.The optical emission spectra are used to characterize the plasma and confirm that it is in a non-equilibrium state and the gas temperature is at room temperature.This is the first exploration of Ti3C2Tx on the regulation of electrical discharge characteristics as far as we know.This work proves the feasibility of Ti3C2Tx as a source of seed electrons to form homogeneous DBD,establishing a preliminary foundation for promoting the application of atmospheric pressure non-equilibrium plasma.  相似文献   

3.
利用100MeV/u的12C6+离子束辐照酵母Saccharomyces cerevsiea YY,选育出一株高产突变菌株C03A,考察C03A发酵过程中不同温度、pH、糖汁浓度对发酵的影响。通过正交实验确定最佳发酵条件为:糖汁浓度24%、温度35℃、pH5.0。在10L发酵罐实验中,C03A发酵速率相对原始菌株高,36h发酵完全,比原始菌株缩短12h;发酵产酒率达到13.2%(V/V),比原始菌株高1.6%(V/V)。  相似文献   

4.
Gaseous naphthalene has been removed by air plasma generated by pulsed corona discharges at 100°C (LSPM) and dielectric barrier discharges (DBD) up to 250 °C (LPGP) in different reactors geometries. Naphthalene has been chosen as one of unburned hydrocarbon present in exhaust gas engine during the cold start of vehicles. The comparison between the different discharge geometries has been possible using the specific input energy (SIE) as relevant parameter for pollutant removal process control considering the differences in the electrical characteristics and the differences of gas flow. The best naphthalene degradation is obtained in the wire-to cylinder (WTC) corona discharge and the stem-to-cylinder DBD with an energy cost β respectively of 10 and 20 J L -1. The main by-products issues of the naphthalene oxidation are CO2 and CO reaching 45% in Multi-Pin-to-Plan corona discharge. We detected polyaromatic hydrocarbons in the gas phase (few ppm) and in the solid phase deposited in the reactors. The introduction of water in the discharges promotes the naphthalene degradation by OH-atom, which has better oxidising power than O-atom in dry air.  相似文献   

5.
Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC).The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carder gas of air/argon.The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma.With the addition of tert-butyl alcohol in the treated MCC water suspension solution,depolymerization effectiveness of MCC was inhibited.When MCC was pretreated by DBD plasma for 30 min,the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.  相似文献   

6.
The dielectric barrier discharge(DBD) in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments. In this paper, the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified. It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap. The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode. The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature, which is beneficial for industrial applications. This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD, which can provide some references for the development and applications of the DBD in the future.  相似文献   

7.
In order to achieve atmospheric pressure diffuse dielectric barrier discharge (DBD) in air, a helical–helical electrode structure with a floating-voltage electrode is proposed in this paper. Results from an electric field distribution simulation indicate that strong electric fields are formed where the helical-contact electrodes’ insulating layers are in contact with each other, as well as near the floating-voltage electrode, which contributes to the production of a large number of seed electrons. The electric field within the air gap is weak (< 3×106 Vm−1), which inhibits the rapid development of electron avalanches and the formation of filament discharge. The experimental result shows that a 3.0 mm width diffuse DBD is generated in air. Moreover, based on the study of the helical–helical electrode with a floating-voltage electrode, a threedimensional electrode structure is presented, and a three-dimensional diffuse discharge is generated in air by adopting this electrode structure. The plasma studied is stable and demonstrates good diffusion characteristics, and therefore has potential applications in the field of exhaust gas treatment and air purification.  相似文献   

8.
Discharge plasmas in air can be accompanied by ultraviolet(UV) radiation and electron impact,which can produce large numbers of reactive species such as hydroxyl radical(OH·),oxygen radical(O·),ozone(O3),and nitrogen oxides(NOx),etc.The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds(VOCs) treatment with the discharge plasmas.In this paper,we propose a volume discharge setup used to purify formaldehyde in air,which is configured by a plate-to-plate dielectric barrier discharge(DBD) channel and excited by an AC high voltage source.The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde.The energy efficiency ratios(EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel,and the most desirable processing effect is the gas flow velocity within the range from2.50 to 3.33 m s-1.Moreover,the EERs of both the generated dosages of oxides(O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell.Additionally,the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density,and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1.This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD,and it is helpful in the applications of VOCs removal by using discharge plasma.  相似文献   

9.
A combined method of granular activated carbon (GAC) adsorption and bipolar pulse dielectric barrier discharge (DBD) plasma regeneration was employed to degrade phenol in water. After being saturated with phenol, the GAC was filled into the DBD reactor driven by bipolar pulse power for regeneration under various operating parameters. The results showed that different peak voltages, air flow rates, and GAC content can affect phenol decomposition and its major degradation intermediates, such as catechol, hydroquinone, and benzoquinone. The higher voltage and air support were conducive to the removal of phenol, and the proper water moisture of the GAC was 20%. The amount of H2O2 on the GAC was quantitatively determined, and its laws of production were similar to phenol elimination. Under the optimized conditions, the elimination of phenol on the GAC was confirmed by Fourier transform infrared spectroscopy,and the total removal of organic carbons achieved 50.4%. Also, a possible degradation mechanism was proposed based on the HPLC analysis. Meanwhile, the regeneration efficiency of the GAC was improved with the discharge treatment time, which attained 88.5% after 100 min of DBD processing.  相似文献   

10.
Effect of chitosan on antifelting and dyability of dielectric barrier discharge (DBD) pretreated wool fabric were evaluated. We have used a DBD, working in an atmospheric pressure air for pretreatment of wool fabric. The chitosan was applied to pretreated wool fabrics by using pad-dry cure technique. The anti-felting properties of the wool samples were studied and it was shown that the shrink resistance and anti-felting behavior of the wool had been significantly improved by the DBD pretreatment followed by chitosan grafting. In addition, dye ability of wool fabrics after plasma/chitosan treatment is improved. Some analytical skills such as Fourier transform infrared spectroscopy and scanning electron microscope were used to characterize the different aspects of the treated fabric.  相似文献   

11.
Atmospheric pressure glow discharge (APGD) plasma in air has high application value.In this paper,the methods of generating APGD plasma in air are discussed,and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied.It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress.Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field,the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated.Further,through combining electrode structures,a large area of APGD plasma in air is generated.On the other hand,by using the method of increasing the density of initial electrons,millimeter-gap glow discharge in atmospheric pressure air is formed,and a maximum gap distance between electrodes is 8 ram.By using the APGD plasma surface treatment device composed of contact electrodes,the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained.The present paper provides references for the researchers of industrial applications of plasma.  相似文献   

12.
In this study, the effects of the fluid cooling and electric field line deformation were investigated in a dielectric barrier discharge (DBD) plasma source. The DBD plasma jet is improved by covering the ground electrode and a power electrode with insulating oil. We obtained positive results as insulating oil prevents arc formation, while it improved the supplied power and plasma jet length, and increased radical production. Radical production of this nonthermal plasma jet is studied with polyvinyl alcohol–potassium iodide liquid.  相似文献   

13.
A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 ℃ and 64.3 ℃ after 900 s operation, respectively.The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs,reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.  相似文献   

14.
Air cold plasma has been used as a novel method for enhancing microbial fermentation.The aim of this work was to explore the effect of plasma on membrane permeability and the formation of ATP and NADH in Saccharomyces cerevisiae,so as to provide valuable information for largescale application of plasma in the fermentation industry.Suspensions of S.cerevisiae cells were exposed to air cold plasma for 0,1,2,3,4 and 5 min,and then subjected to various analyses prior to fermentation(0h) and at the 9 and 21 h stages of fermentation.Compared with nonexposed cells,cells exposed to plasma for 1 min exhibited a marked increase in cytoplasmic free Ca~(2+) concentration as a result of the significant increase in membrane potential prior to fermentation.At the same time,the ATP level in the cell suspension decreased by about 40%,resulting in a reduction of about 60%in NADH prior to culturing.However,the levels of ATP and NADH in the culture at the 9 and 21 h fermentation stages were different from the level at0 h.Taken together,the results indicated that exposure of S.cerevisiae to air cold plasma could increase its cytoplasmic free Ca~(2+) concentration by improving the cell membrane potential,consequently leading to changes in ATP and NADH levels.  相似文献   

15.
The effect on the germination and seedling growth of radish (Raphanus sativus) seeds were examined employing a dielectric barrier discharge (DBD) at atmospheric pressure and room temperature for various treatment time. DBD plasma using argon gas of flow rate 2 l m−1 was employed in this study. Radish seeds were treated with DBD plasma for 1–5 min, respectively. Germination characteristics, seedling growth parameters, the contact angle of the seed coat, water uptake capacity, mass loss, the temperature of the seeds, chlorophyll, and carotenoid contents of the seedlings were measured before and after the DBD plasma treatments. Plasma treatment of radish seeds significantly increased germination-related characters, including germination percentage, fresh and dry weight, vigor index, and total carotenoids contents. However, the cumulative production rate was found to be decreased. Results from the experiment indicate an acceleration in the water uptake of the radish seeds and make the seed surface hydrophilic by plasma treatment. Scanning electron microscopy analysis showed that etching effects on the seed coat occurred after the argon plasma treatments, which affected the wettability of the radish seed. The experimental findings showed that seeds being treated by DBD plasma for 2 and 3 min had a positive effect on the germination and seedling growth of radish.  相似文献   

16.
Dielectric barrier discharge (DBD) is utilized to decompose xylene vapor in mobile gas under normal atmospheric pressure.The plasma is generated by an AC power source with a frequency of 6 kHz.In the experiment,the discharge power on the DBD reactor was calculated by a Lissajous figure,and the specific input energy (SIE) of different discharge voltage or residence time was obtained.The concentrations of xylene,carbon monoxide and carbon dioxide in the gas were analyzed by gas chromatography.The spectra of DBD were diagnosed using a spectrometer.We calculated the conversion rate (CR),mineralization rate (MR) and carbon dioxide selectivity.The relationship between these quantities and the SIE was analyzed.The experimental results show that high concentration xylene can be decomposed mostly by DBD plasma.The CR can reach as high as 90% with the main product of carbon dioxide.  相似文献   

17.
1. IntroductionArgon plasma has been frequently used for mate-rial processing and film fabrication processes [1l [21 [31.The efficiency of these processes has very close rela-tion with plasma parameters [4][5], such as ion den-sity, electron temperature and ion energy dlstrlbu-tion. Lots of research has been done on the relation-ship between efficiency and availability of materialprocessing and plasma parameters [6][7].Both lCP dlscharge and DBD discharge are newtype plasma systems developed…  相似文献   

18.
Air pollution is a major health problem in developing countries and has adverse effects on human health and the environment. Non-thermal plasma is an effective air pollution treatment technology. In this research, the performance of a dielectric barrier discharge (DBD) plasma reactor packed with glass and ceramic pellets was evaluated in the removal of SO2 as a major air pollutant from air in ambient temperature. The response surface methodology was used to evaluate the effect of three key parameters (concentration of gas, gas flow rate, and voltage) as well as their simultaneous effects and interactions on the SO2 removal process. Reduced cubic models were derived to predict the SO2 removal efficiency (RE) and energy yield (EY). Analysis of variance results showed that the packed-bed reactors (PBRs) studied were more energy efficient and had a high SO2 RE which was at least four times more than that of the non-packed reactor. Moreover, the results showed that the performance of ceramic pellets was better than that of glass pellets in PBRs. This may be due to the porous surface of ceramic pellets which allows the formation of microdischarges in the fine cavities of a porous surface when placed in a plasma discharge zone. The maximum SO2 RE and EY were obtained at 94% and 0.81 g kWh−1, respectively under the optimal conditions of a concentration of gas of 750 ppm, a gas flow rate of 2 l min−1, and a voltage of 18 kV, which were achieved by the DBD plasma packed with ceramic pellets. Finally, the results of the model's predictions and the experiments showed good agreement.  相似文献   

19.
The dielectric barrier discharge (DBD) and pulse corona discharge(POD) plasmagenerator was used to remove NHa, H2S, C7H8 etc. from atmosphere. The principle and charac-teristic of the two ways was discussed in the article. The test shows the result of PCD is betterthan that of DBD.  相似文献   

20.
《等离子体科学和技术》2019,21(11):115503-85
An efficient toluene removal in air using a plasma photocatalytic system(PPS) not only needs favorable surface reactions over photocatalysts under the action of plasma,but also requires the photocatalysts to efficiently absorb light emitted from the discharge for driving the photocatalytic reactions. We report here that the PPS constructed by integrating a black titania(B-TiO_2)photocatalyst with a dielectric barrier discharge(DBD) can effectively remove toluene with above 70% CO_2 selectivity and remarkably reduced the concentration of secondary pollutants of ozone and nitrogen oxides at a specific energy input of 1500 J·l~(-1),while exhibiting good stability. Photocatalyst characterizations suggest that the B-TiO_2 provides a high concentration of oxygen vacancies for the surface oxidation of toluene in DBD,and efficiently absorbs ultraviolet–visible light emitted from the discharge to induce plasma photocatalytic oxidation of toluene. The presence of B-TiO_2 in the plasma region also results in a high discharge efficiency,facilitating the generation of large numbers of reactive species and thus the oxidation of toluene towards CO_2. The greatly enhanced performance of the PPS integrated with B-TiO_2 in toluene removal offers a promising approach to efficiently remove refractory volatile organic compounds from air at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号