首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
多孔介质通道内两相流动特性实验研究   总被引:2,自引:1,他引:1  
设计并搭建各向同性的多孔介质颗粒无序堆积的实验平台,针对由直径分别为60、70 mm的有机玻璃圆管和2、4、6、8 mm的不锈钢圆球所组成的多孔介质通道开展氮气-水两相工况下通道内流动特性的实验研究。实验结果表明,在液体流量一定的情况下,实验段压降随管径的增大而减小,随颗粒直径的减小而增大,随气相流量的增大而增大;在管径一定的情况下,实验段压降随颗粒直径的增大而减小。通过拟合获得了本实验条件下的两相压降关联式。  相似文献   

2.
摇摆运动作为一种典型海洋条件,对管内的气液两相流动过程产生较大影响。本工作通过摇摆条件下空气 水泡状流在矩形通道内流动阻力特性的实验,研究摇摆运动对两相流动过程的影响。实验在常温、常压下进行,通道尺寸为40 mm×10 mm,摇摆角度为10°、15°和30°,摇摆周期为8、12和16 s。结果表明,摇摆条件下瞬态摩擦压降的变化具有明显周期性,随着两相雷诺数变大,瞬态摩阻系数的波动幅度和平均水平均变小;摇摆周期越小,摇摆振幅越大,即摇摆运动越剧烈,摩擦压降的波动幅度也越大。  相似文献   

3.
王涛  王均  王小军 《核动力工程》2012,33(4):96-101
在中低压条件下,对矩形窄缝通道两相流动传热进行试验研究,分析两相流动传热的变化规律,拟合出饱和沸腾传热系数计算关系式,并采用简化的一维分析方法对两相压降进行分析计算。试验结果表明:在相同热平衡含汽率(x)情况下,两相流动压降随系统压力(p)的降低而增大,随系统流量的增大而增大的变化规律;p越低,两相流动压降随x的增加而增大越剧烈;流量越大,两相流动压降随x的增加而增大越剧烈。通过数据回归方法得到汽相湿周长比例因子F并拟合了计算关系式,其计算值与试验值符合得较好。矩形窄缝通道内饱和沸腾平均传热系数受p、质量流量及热流密度的影响较大。  相似文献   

4.
通过对截面为40 mm×3 mm窄矩形通道内不同正弦脉动周期、振幅、平均流量工况下氮气 水两相流(平均分液相雷诺数Rel<10 000,平均分气相雷诺数Reg<800)进行实验研究,发现两相脉动流与单相水脉动流的规律不同,平均压差对脉动周期、振幅不敏感。应用各经验公式计算的脉动工况下平均摩擦压降的偏差与稳态工况的计算偏差在数值和分布上均无明显差异,且计算值分布在测量值两侧、相对偏差基本小于20%。其中,Mishima-Hibiki方法和Lee-Lee方法的计算结果与测量结果吻合良好,相对偏差在10%以内,说明两相流摩擦压降经验公式同样适用于脉动工况下平均摩擦压降的计算。  相似文献   

5.
窄矩形通道内两相流动压降特性研究   总被引:6,自引:6,他引:0  
以空气和水为工质,在40mm×1.6mm的窄矩形通道中对竖直向上气-液两相流动压降特性进行了实验研究。对比了现有的两相流动阻力计算关系式,结果表明,传统的计算关系式均不适用于窄矩形通道内两相流动阻力的计算;而以窄矩形通道为基础的Lee-Lee关系式误差相对较小,但预测值与实验值相比整体偏小。为此结合实验数据,以分液相-分气相雷诺数之比Rel/Reg为依据将流动分为两个区域,分别对Chisholm关系式进行修正,修正关系式与实验数据的误差较小,能够很好地预测本次实验结果。  相似文献   

6.
在机玻璃竖直矩形通道内,以空气和去离子水为工质获得实验数据。据此对竖直矩形小通道内均相流模型的适用性进行评价。结果表明,采用McAdams两相粘度时均相流模型及Chen等提出的修正均相流模型能较好用于1.41 mm间隙通道压降的预测,平均绝对误差分别为10.92%和12.20%;采用McAdams两相粘度时均相流模型对于3 mm间隙通道在两相雷诺数Re大于6000时平均绝对误差为10.04%,但气-液两相Re较低时预测偏差较大。通过实验数据分析得到了均相流模型适用于3 mm间隙通道的范围;针对两相Re较低的区域拟合得到了新的经验关系式,其预测值与实验值符合较好。  相似文献   

7.
本工作对摇摆运动下水在矩形窄通道内流动沸腾阻力特性进行实验研究分析。一方面利用竖直静止实验数据对已有两相压降的计算方法进行评价,结果表明,应用于常规通道的关系式已不适用于窄通道中流动沸腾压降的计算,基于窄通道的Zhang-Mishima及Sun-Mishima关系式预测结果与实验值符合较好;另一方面得出了摇摆运动下流动沸腾阻力特性,摇摆运动使两相压降周期性波动,但摇摆角度和摇摆周期对压降的波动幅度、两相平均摩擦压降几乎无影响。  相似文献   

8.
分析了各空泡份额模型随质量流量、系统压力及质量含气率的变化关系,并对各空泡份额计算模型在窄矩形通道内的应用进行了评价。研究结果表明:尽管空泡份额模型选取对重位压降及加速压降计算影响极大,但由于窄矩形通道内的饱和沸腾流动以环状流为主,重位压降及加速压降在两相总压降中的份额极小,因此在两相摩擦压降计算过程中,空泡份额模型的影响非常轻微。采用Zivi模型计算得到的沸腾摩擦压降与其他关系式计算值相对偏差在±5%范围内,因此建议采用Zivi模型计算窄矩形通道内空泡份额。  相似文献   

9.
通过实验研究了摇摆造成的周期性附加惯性力作用下矩形窄通道内空气 水两相流压降特性。按分液相雷诺数将流动分为层流区(Ref <800)、过渡区(800≤Ref≤1 400)及湍流区(Ref >1 400)3个区域,并对各区域内附加压降、重位压降和摩擦压降平均值及瞬态值进行了比较。结果表明,附加惯性力对窄通道内两相流整数倍周期内平均摩擦阻力无明显影响。周期性附加惯性力作用下(摇摆周期16 s,摇摆振幅30°),层流区及过渡区气相表观速度、液相表观速度、质量含气率及摩擦压降随时间周期性波动,波动周期等于摇摆运动周期;瞬时摩擦压降相对于其平均值的波动幅值随气液两相流速的增加而减小。湍流区两相流动参数周期性波动不明显。  相似文献   

10.
对环形通道内液态金属钠沸腾两相流动特性进行了实验研究。实验中质量流速G≤2 000kg·m-2·s-1,系统压力p≤0.1 MPa,热流密度q≤550kW·m-2。两相流动摩擦压降通过在相同质量流量的单相流动摩擦阻力系数的基础上引入两相摩擦倍增因子来考虑两相的影响。实验结果表明:环形通道内液态金属钠两相摩擦倍增因子随Martinelli参数的增大有减小趋势。综合本文实验数据、Lurie等的实验数据以及Kaiser等的棒束实验数据,拟合得到了计算液态金属钠沸腾两相流动摩擦倍增因子的关系式。计算了本文拟合得到的关系式与各组实验数据间的相对标准偏差(RSD),表明本文关系式适用于计算环形通道内液态金属钠沸腾两相流动特性。  相似文献   

11.
本文通过可视化方法对竖直与倾斜条件下矩形通道内弹状流单元的参数进行研究,尝试给出摇摆状态下矩形通道内弹状流压力模型。通过图像处理给出气弹段空泡份额以及两相速度的计算关系式,并验证漂移流模型在液弹段的适用性,给出弹状流单元的长度份额以及空泡份额的计算关系式。根据实验结果给出摇摆条件下矩形通道内弹状流压力组分的模型,并重点分析摩擦压降模型的适用程度。结果表明,弹状流压力模型可很好地预测摇摆条件下矩形通道内的压力。  相似文献   

12.
本文以空气和水为工质,对竖直向上矩形通道(40 mm×1.41 mm,40 mm×10 mm)和圆形通道(D=25 mm)内的两相流流型特性进行了可视化研究。气液两相的表观速度分别为:0.03~24.71 m/s和0.03~3.73 m/s。3个实验段内均出现了泡状流、弹状流、搅混流和环状流4种流型,40 mm×10 mm和圆形通道中流型特征较为接近,与40 mm×1.41 mm通道中流型相比存在明显差别。此外,绘制出了3种通道详细的流型图。对比结果显示,矩形通道窄边宽度对流型转变有显著的影响,随着矩形通道窄边宽度的增加,其流型转变边界更加趋近于圆形通道。  相似文献   

13.
常压下以空气和去离子水为工质,对横截面为1.41 mm×40 mm和3 mm×40 mm的竖直矩形通道内两相流动阻力特性进行了实验研究。利用获得的764组实验数据,对11种典型两相流摩擦阻力计算模型进行评价。结果表明:Lee-Lee模型整体预测精度最高,但在分液相雷诺数较小(Rel<600)和较大(Rel>8 700)区域,与实验值符合较差;在分液相紊流区(Rel≥2 000) Chisholm B模型适用性较好,对于两实验段预测值与实验值绝对平均误差分别为6.13%和6.43%,但在分液相层流区(Rel<2 000)其预测值与实验值偏差较大。根据压降特性提出修正两相动力黏度,并针对分液相层流区提出修正计算关系式,其预测值与实验值符合较好。  相似文献   

14.
对流量脉动条件下矩形通道内的相位差进行了实验研究,通过建立的脉动层流相位差数学模型,对脉动周期、脉动振幅、通道结构尺寸和流体性质等因素进行了分析,并将实验数据与理论模型结果进行对比。结果表明:矩形通道内,脉动层流的流量变化滞后于压降变化,存在相位差,该相位差仅与脉动周期、流道结构尺寸和流体性质有关,与压降相对振幅无关。  相似文献   

15.
窄矩形通道内两相流动压降特性研究   总被引:1,自引:1,他引:0  
以空气和水为实验工质,分别在40mm×1.6mm和40mm×3mm的矩形通道中对竖直向上气-液两相流动阻力特性进行了实验研究。该研究还对比了现有的两相流动阻力计算关系式,结果表明,对于窄缝为1.6mm的通道,传统的阻力计算关系式均不适用;而窄缝为3mm的通道,除Friedel模型和Tran模型外,其余模型与实验值符合较好。为此结合实验数据,以分液相雷诺数为依据将流动分为层流区、过渡区和湍流区3个区域,分别对Chisholm关系式进行修正,结果表明:C为当量直径的线性函数,当量直径越大,C越小。修正关系式与实验数据的误差较小,能很好地预测本次实验结果。  相似文献   

16.
In this paper, the frictional pressure drop in an isothermal liquid metal-gas two-phase flow through a rectangular channel with large width-to-height ratio is treated semiempirically for a NaK-N2 two-phase flow system.

The frictional pressure drop in the two-phase flow is compared with the following two reference values :

1. The frictional pressure drop in the liquid flowing alone in single phase with the same velocity as that of the liquid in the two-phase mixture.

2. The frictional pressure drop in the liquid flowing alone in single phase with the same mass flow rate as that of the liquid in the two-phase mixture.

The comparison with the former reference value is necessary for the prediction of friction loss in a liquid metal MHD generator channel whose medium would be two-phase mixture.

The semiempirical analysis was performed assuming the two-phase mixture to be a continuous medium with its properties, e.g. viscosity and density, defined by void fraction and the velocity determined by the total mass flow rate.

In the region of low slip and density ratio ρgl the frictional pressure drop in the two-phase flow appeared to be smaller than that due to the liquid flowing alone with the same velocity as that of the liquid in the two-phase flow.

The experiments have been undertaken with the NaK-N2 two-phase mixture flowing through a rectangular channel (4 × 60 mm2).

Data were taken over the following parameter range:

NaK velocity: 5~30 m/sec, Void fraction: 0~70%

Density ratio: 0.006~0.013, Quality: 0.07~1.10%.  相似文献   

17.
摇摆条件下窄矩形通道内两相流动瞬态阻力特性研究   总被引:1,自引:1,他引:0  
摇摆条件下的气液两相流动受摇摆引起的附加惯性力的影响,致使其摩擦阻力特性发生改变。本工作在摇摆周期为8、12、16 s和摇摆振幅为10°、15°、30°的条件下,对窄矩形通道(40 mm×1.6 mm)内空气-水两相流动的瞬态阻力特性进行了研究。结果表明:摇摆时瞬态摩阻系数的变化呈明显周期性;气相质量含气率越大,摩擦压降的波动幅度越大;摇摆周期越小,振幅越大,摩擦压降的波动幅度越大。给出1个用于计算摇摆条件下两相摩阻系数的关联式,92.5%的计算值的相对误差在±20%以内  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号