首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
石雪垚  詹经祥  刘建平 《核动力工程》2012,33(Z1):104-106,110
建立严重事故管理导则中用于判断氢气燃烧、超压风险以及安全壳降压时氢气风险的判断工具。用一体化事故分析程序对全厂断电事故进行模拟计算,用该氢气风险判断工具对不同事故阶段的氢气风险进行分析。结果表明:在全厂断电始发的严重事故下,没有氢气复合器且没有安全壳喷淋时,安全壳大气在一段时间内会被水蒸气惰化,不会发生燃烧,但如果应急电源恢复,重新启动安全壳喷淋时,有可能引起氢气燃烧甚至造成安全壳超压;在增加氢气复合器后,没有造成安全壳超压的风险,并且判断结果是保守的。  相似文献   

2.
应用新版的MELCOR程序,以秦山二期核电厂为对象,对无缓解措施条件下的SBO严重事故序列进行了分析计算,对堆芯熔融过程中包壳和燃料芯块的径向和轴向分段失效模式进行了模拟.对事故中后期可燃气体的产生、分布及在安全壳中的行为进行了估算。分析结果表明,堆芯在事故发生约3h后开始失效;压力容器在约10h后发生熔穿;氢气和一氧化碳在穹顶发生的剧燃导致了安全壳在30h后超压失效。  相似文献   

3.
严重事故下核电站安全壳内氢气分布及控制分析   总被引:2,自引:1,他引:2  
使用安全壳分析程序CONTAIN计算分析了百万千瓦级压水堆核电站严重事故下安全壳内的氢气浓度分布.分别对一回路冷段大破口失水(LB-LOCA)叠加应急堆芯冷却系统(ECCS)失效(不包括非能动的安注箱)事故和全厂断电(SBO)叠加汽轮机驱动的应急给水泵失效事故两个严重事故序列进行了计算.计算结果表明,不同严重事故下,安全壳各隔间对氢气控制系统的要求不同.氢气控制系统的设计必须满足不同事故下的法规要求,提高电站的安全性.  相似文献   

4.
压水堆核电厂发生严重事故期间,从主系统释放的蒸汽、氢气以及下封头失效后进入安全壳的堆芯熔融物均对安全壳的完整性构成威胁。以国内典型二代加压水堆为研究对象,采用MAAP程序进行安全壳响应分析。选取了两种典型的严重事故序列:热管段中破口叠加设备冷却水失效和再循环高压安注失效,堆芯因冷却不足升温熔化导致压力容器失效,熔融物与混凝土发生反应(MCCI),安全壳超压失效;冷管段大破口叠加再循环失效,安全壳内蒸汽不断聚集,发生超压失效。通过对两种事故工况的分析,证实了再循环高压安注、安全壳喷淋这两种缓解措施对保证安全壳完整性的重要作用。  相似文献   

5.
严重事故下堆芯熔融物与混凝土的相互作用   总被引:1,自引:1,他引:0  
当反应堆由于始发事件发展到压力容器熔融贯穿时,堆芯熔融物与混凝土相互作用(MCCI)可能引起安全壳晚期失效,包括地基熔穿及不可凝气体引起的安全壳超压失效。本文以600MW轻水堆核电厂为对象,选取全厂断电(SBO)叠加汽动辅助给水泵失效诱发的严重事故序列,应用MELCOR程序研究了该序列下发生MCCI的主要现象,着重关注了混凝土的消融速率及氢气的产生速率,为相应的严重事故管理提供支持。  相似文献   

6.
为防止发生高压熔堆,降低安全壳内氢气燃爆的风险,CPR1000型核电厂采取了一系列的严重事故缓解措施。应用新版的MELCOR 2.1程序,针对有无严重事故缓解措施条件下全厂断电(SBO)事故序列进行计算分析,模拟了事故进程中堆芯的状态,对事故过程中氢气的产生、分布及其行为进行了评估。分析结果表明,稳压器卸压功能延伸能够有效防止高压熔堆现象的发生,消氢系统通过在安全壳内的合理布置,可有效降低氢气爆炸的风险,防止了安全壳发生早期失效。  相似文献   

7.
为防止发生高压熔堆,降低安全壳内氢气燃爆的风险,CPR1000型核电厂采取了一系列的严重事故缓解措施。应用新版的MELCOR 2.1程序,针对有无严重事故缓解措施条件下全厂断电(SBO)事故序列进行计算分析,模拟了事故进程中堆芯的状态,对事故过程中氢气的产生、分布及其行为进行了评估。分析结果表明,稳压器卸压功能延伸能够有效防止高压熔堆现象的发生,消氢系统通过在安全壳内的合理布置,可有效降低氢气爆炸的风险,防止了安全壳发生早期失效。  相似文献   

8.
以全球首个采用非能动设计的三代核电技术的三门核电厂为分析对象,结合电厂现行严重事故管理导则(SAMG),研究安全壳严重威胁状态下的氢气风险控制。使用一体化事故分析程序建立了电厂模型,分析了热段2英寸破口叠加专设安全设施失效导致产生超过100%活性区锆水反应产氢量的严重事故序列。在此假想工况下安全壳水冷功能失效导致事故后安全壳处于惰化环境中,而产生了安全壳超压风险和氢气风险并存的不利情况。对比分析了仅执行严重威胁导则-2(SCG-2)恢复安全壳水冷和执行SCG-2后执行SCG-3控制安全壳氢气风险的两种情况,结果表明开启/关闭安全壳水冷功能在一定程度上缓解了安全壳的超压风险和氢气风险,可为严重事故管理导则的具体实施提供技术支持。  相似文献   

9.
严重事故缓解措施对全厂断电(SBO)事故进程影响分析   总被引:4,自引:0,他引:4  
应用新版的MELCOR程序,以600 MW机组为对象,进行了SBO严重事故进程研究,在严重事故计算分析中比较了稳压器功能延伸、非能动氢气复合等缓解措施(3个方案)对严重事故进程和现象的影响.对堆芯熔融过程中包壳和燃料栅元的径向和轴向分段失效模式进行了模拟;计算了熔融堆芯和堆坑混凝土的相互作用(MCCI)引起的堆坑径向和轴向熔蚀的情况;对事故中后期可燃气体的产生、分布及非能动氢气复合系统在安全壳中对氢气的复合效应进行了评价和分析.分析结果表明,事故下稳压器延伸功能的及时投入,可使堆芯整体坍塌失效及压力容器熔穿均延后了近5 h,同时也降低了通过蒸汽发生器(SG)U型管向二次侧及环境早期释放放射性的风险.方案3_C表明10台氢气复合器在24 h内有效地复合了667 kg氢气,安全壳大空间最大氢气摩尔浓度为3.12%,安全壳内压力约为0.4 MPa.  相似文献   

10.
采用模块化严重事故计算工具,对秦山二期核电厂大破口失水事故(LB-LOCA)、小破口失水事故(LB-LOCA)和全厂断电(SBO)诱发的严重事故序列以及安全壳内的氢气浓度分布进行了计算分析.在此基础之上,参考美国联邦法规10CFR关于氢气控制和风险分析的标准,对安全壳的氢气燃烧风险进行了初步研究.分析结果表明:大破口严重事故导致的安全壳内的平均氢气浓度接近10%,具有一定的整体性氢气燃烧风险,小破口失水和全厂断电严重事故可能不会导致此类风险,但仍然存在局部氢气燃烧的可能.  相似文献   

11.
Severe accident analysis for Korean OPR1000 with MELCOR 1.8.6 was performed by adapting a mitigation strategy under different entry conditions of Severe Accident Management Guidance (SAMG). The analysis was focused on the effectiveness of the mitigation strategy and its adverse effects. Four core exit temperatures (CETs) were selected as SAMG entry conditions, and Small Break Loss of Coolant Accident (SBLOCA), Station Blackout (SBO), and Total Loss of Feed Water (TLOFW) were selected as postulated scenarios that may propagate into severe accidents. In order to delay reactor pressure vessel (RPV) failure, entering the SAMG when the CET reached 923 K, 923 K, and 753 K resulted in the best results for SBLOCA, SBO, and TLOFW scenarios, respectively. This implies that using event-based diagnosis for severe accidents may be more beneficial than using symptom-based diagnosis. There is no significant difference among selected SAMG entry conditions in light of the operator's available action time before the RPV failure. Potential vulnerability of the RPV due to hydrogen generation was analyzed to investigate the foreseeable adverse effects that act against the accident mitigation strategies. For the SBLOCA cases, mitigation cases generated more hydrogen than the base case. However, the amount of hydrogen generated was similar between the base and mitigation cases for SBO and TLOFW. Hydrogen concentrations of containment were less than 5% before RPV failure for most cases.  相似文献   

12.
Advanced small modular reactors (SMRs) use different design in the systems, structures, components from large reactors for achieving a high level of safety and reliability. In present work, the SMRs severe accident caused by the station blackout (SBO) was modeled and analyzed using MELCOR code, and the simulation of the accident scenario response to SBO was conducted. Based on the steady state calculation, which agrees well with designed values, we introduced the SBO accident for transient calculation. First, the case of the SBO accident without the passive core cooling system (PXS) was calculated. The progression and scenario in the reactor pressure vessel (RPV) and the containment were simulated and analyzed, including the transient response, cooling capacity and thermal-hydraulic characteristics and so on. The station black-out transient in the SMR can be simulated accurately, and the main failure model in the accident process can be concluded. Then three other cases of the SBO accident with different passive safety systems (core makeup tank (CMT), accumulator (ACC), passive residual heat removal system heat exchanger (PRHR HX), automatic depressurization system (ADS)) of the PXS were calculated respectively, and the results for different passive safety systems were compared. The passive core cooling system can not only provide water to the primary coolant system, but also take away the reactor decay residual heat. So in a station black-out transient, we can get more time for restoring AC power, and effectively prevent the accidents such as Fukushima.  相似文献   

13.
A depressurization possibility of the reactor coolant system (RCS) before a reactor vessel rupture during a high-pressure severe accident sequence has been evaluated for the consideration of direct containment heating (DCH) and containment bypass. A total loss of feed water (TLOFW) and a station blackout (SBO) of the advanced power reactor 1400 (APR1400) has been evaluated from an initiating event to a creep rupture of the RCS boundary by using the SCDAP/RELAP5 computer code. In addition, intentional depressurization of the RCS using power-operated safety relief valves (POSRVs) has been evaluated. The SCDAPRELAP5 results have shown that the pressurizer surge line broke before the reactor vessel rupture failure, but a containment bypass did not occur because steam generator U tubes did not break. The intentional depressurization of the RCS using POSRV was effective for the DCH prevention at a reactor vessel rupture.  相似文献   

14.
The DISCO test facility at Forschungszentrum Karlsruhe (FZK) has been used to perform experiments to investigate direct containment heating (DCH) effects during a severe accident in European nuclear power plants, comprising the EPR, the French 1300 MWe plant P’4, the VVER-1000 and the German Konvoi plant. A high-temperature iron–alumina melt is ejected by steam into scaled models of the respective reactor cavities and the containment vessel. Both heat transfer from dispersed melt and combustion of hydrogen lead to containment pressurization. The main experimental findings are presented and critical parameters are identified.The consequences of DCH are limited in reactors with no direct pathway between the cavity and the containment dome (closed pit). The situation is more severe for reactors which do have a direct pathway between the cavity and the containment (open pit). The experiments showed that substantial fractions of corium may be dispersed into the containment in such cases, if the pressure in the reactor coolant system is elevated at the time of RPV failure. Primary system pressures of 1 or 2 MPa are sufficient to lead to full scale DCH effects. Combustion of the hydrogen produced by oxidation as well as the hydrogen initially present appears to be the crucial phenomenon for containment pressurization.  相似文献   

15.
全厂断电引发的严重事故若处置不当,可能发展为长期、高压的严重事故进程,此时堆芯冷却系统中的自然循环在导出部分堆芯余热的同时,也增加了蒸汽发生器(SG)传热管、稳压器波动管以及热管段出现蠕变失效的风险。本文基于两环路设计的秦山二期核电厂设计特点,结合蠕变失效风险模型,对全厂断电引发的严重事故后未能执行“严重事故管理导则中向蒸汽发生器注水(SAG-1)”时SG传热管的蠕变失效风险进行了研究,从而为全厂断电引发的严重事故的负面影响提供量化结果,为技术支持中心(TSC)最终决策提供参考依据。分析结果表明,全厂断电引发的严重事故后16 361 s可能出现蠕变失效;自事故后16 610 s,SG传热管出现蠕变失效的可能性均远低于稳压器波动管与热管段,秦山二期核电厂全厂断电引发的严重事故下因SG传热管蠕变失效而导致安全壳旁通的风险很小。  相似文献   

16.
Intentional depressurization is one of the effective strategies in preventing high-pressure melt ejection (HPME) and direct containment heating (DCH), which is most feasible for the operating nuclear power plants (NPPs) in China. In order to evaluate this strategy of a Chinese 600 MWe PWR NPP, the plant model is built using SCDAP/RELAP5 code. ATWS, SBO, SGTR and SLOCA are selected as the base cases for analysis of intentional depressurization. The results show that opening safety valves of pressurizer manually when the core exit temperature exceeds 922 K can reduce the RCS pressure effectively and prevent the occurrence of HPME and DCH. Several uncertainties such as the operability of safety valves, ex-vessel failure and the transitory rise of RCS pressure are also analyzed subsequently. The results show that the opening of the safety valves can be initiated normally and that opening three safety valves is a more favorable strategy in the event of possible failure of one or more of the safety valves; the probability of ex-vessel failure is reduced after intentional depressurization is implemented; the transitory rising of reactor coolant system (RCS) pressure when the molten core materials relocate to the lower head of reactor pressure vessel (RPV) will not influence the effect of depressurization.  相似文献   

17.
Using the MELCOR code, we simulated and analyzed a severe accident at a Chinese pressurized reactor 1000-MW (CPR1000) power plant caused by station blackout (SBO) with failure of the steam generator (SG) safety relief valve (SRV). The CPR1000 response and results for three different scenarios were analyzed: (i) seal leakage and an auxiliary feed water (AFW) supply; (ii) no seal leakage or AFW supply; and (iii) seal leakage but no AFW supply. The results for the three scenarios are compared with those for a simple SBO accident. According to our calculations, the SG SRV stuck in the open position would greatly accelerate the sequence for a severe accident. For an SBO accident with the SRV stuck open without seal leakage or an AFW supply, the pressure vessel would fail at 9576 s and the containment system would fail at 124,000 s. If AFW is supplied, pressure vessel failure would be delayed nearly 30000 s and containment failure would delay at least 50000 s. When seal leakage exists, pressure vessel failure is delayed about 50 s and containment failure time would delay about 30000 s. The results will be useful in gaining an insight into the detailed processes involved and establishing management guidelines for a CPR1000 severe accident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号