首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Annals of Nuclear Energy》2004,31(15):1667-1708
This paper summarizes RELAP5-3D code validation activities carried out at the Lithuanian Energy Institute, which was performed through the modeling of RBMK-1500 specific transients taking place at Ignalina NPP. A best estimate RELAP5-3D model of the INPP RBMK-1500 reactor has been developed and validated against real plant data, as well as with the calculation results obtained using the Russian STEPAN/KOBRA code. The obtained calculation results demonstrate reasonable agreement with Ignalina NPP measured data. Behaviors of the separate MCC thermal-hydraulic parameters, as well as physical processes are predicted reasonably well to the real processes, occurring in the primary circuit of RBMK-1500 reactor. The calculated reactivity and the total reactor core power behavior in time are also in reasonable agreement with the measured plant data, which demonstrates the correct modeling of the neutronic processes taking place in RBMK-1500 reactor core. The performed validation of RELAP5-3D model of Ignalina NPP RBMK-1500 reactor allowed to improve the model, which in the future would be used for the safety substantiation calculations of RBMK-1500 reactors. Future activities are discussed.  相似文献   

2.
This paper deals with the modeling of RBMK-1500 specific transients taking place at Ignalina NPP: measurements of void and fast power reactivity coefficients, as well as change of graphite cooling conditions transient. The simulation of these transients was performed using RELAP5-3D code model of RBMK-1500 reactor. At the Ignalina NPP void and fast power reactivity coefficients are measured on a regular basis and based on the obtained experimental results the actual values of these reactivity coefficients are determined. Graphite temperature reactivity coefficient at the plant is determined by changing graphite cooling conditions in the reactor cavity. This type of transient is unique and important from the point of view of model validation for the gap between fuel channel and the graphite bricks. The measurement results, obtained during this transient, enabled to determine the thermal conductivity coefficient for this gap and to validate the graphite temperature reactivity feedback model. The performed validation of RELAP5-3D model of Ignalina NPP RBMK-1500 reactor allowed to improve the model, which in the future would be used for the safety substantiation calculations of RBMK-1500 reactors.  相似文献   

3.
Validation of the RBMK model, developed by employing best estimate system computer code RELAP5 is performed by employing the data from NPPs operation or from integral and separate effects facilities.Validation of the models on the basis of separate phenomena is necessary to perform due to the fact that RELAP5 code has been developed for PWRs, which operate at different conditions (pressure, temperature, coolant void fraction, etc.) from RBMKs. In addition to that, there is a number of phenomena specific for RBMK type reactors (oscillatory flow rate behaviour in parallel channels, flow stagnation in channels, stratification in long horizontal piping, etc.), which have not been studied during RELAP5 validation for PWRs.In the paper, RELAP5 models for separate effects related to RBMK-1500 are presented and modelling of transients is performed. Obtained results are compared with experimental data.  相似文献   

4.
The paper presents an evaluation of RELAP5-3D code suitability to model-specific transients that take place during RBMK-1500 reactor operation, where the neutronic response of the core is important. Certain RELAP5-3D transient calculation results were benchmarked against calculation results obtained using the Russian complex neutronic-thermal-hydraulic code STEPAN/KOBRA, specially designed for RBMK reactor analysis. Comparison of the results obtained, using the RELAP5-3D and STEPAN/KOBRA codes, showed reasonable mutual agreement of the calculation results of both codes and their reasonable agreement with the real plant data.  相似文献   

5.
This paper deals with the development of an integrated thermal-hydraulics–neutronics model for RBMK-1500 reactors for the analysis of specific plant transients in which the neutronic response of the core is important. A successful best estimate coupled RELAP5-3D model of Ignalina nuclear power plant (NPP) has been developed. The validation of the thermal-hydraulic model has been performed using operational transients from Ignalina NPP. The results of the calculations obtained with the RELAP5-3D model compare reasonably with the real plant data. The RELAP5-3D nodal kinetics model provides reasonable agreement with Ignalina NPP reactor power and coolant density profiles. The eigenvalue is close to unity, indicating that reasonable values are calculated for the neutron fluxes.  相似文献   

6.
The RBMK-type nuclear power reactors, still operating in Russia, are graphite-moderated with vertical fuel channels, using low-enriched nuclear fuel. The main challenge, which leads to the overheating of the fuel assemblies, fuel channels and other core components in channel type nuclear reactors, is a misbalance between heat generation in core structures and heat sink, which can appear due to the loss of coolant accident. In this accidental case, the emergency core cooling system ensures the core cooling. In RBMK-type reactors this system consists of hydro-accumulators and a number of pumps, taking water from large water reservoirs. This equipment injects water into the fuel channels through the group distribution headers at high pressure. However, the direct supply of cold water from emergency core cooling system into fuel channels is possible only if check valves on group distribution headers are closed properly. If these check valves failed, the part of water would be lost through the break, the flow stagnation in channels could occur, which might lead to overheating of fuel assemblies in the fuel channels. This paper presents the results of deterministic safety analysis, performed using system thermal hydraulic code RELAP5. Using this code the reactor cooling system of RBMK-1500 was modelled and analyses of loss of coolant accidents with failure of few check valves in group distribution headers were performed. The results of the calculations are used for the development of symptom-based emergency operating procedures for RBMK-1500. The basic principles that describe the complex distribution of water flows in vertical forced circulation circuit with parallel fuel channels can be adjusted for the RBMK-1000 reactors, still operating in Russia.  相似文献   

7.
The state-of-the-art code RELAP5/MOD3 was originally designed for PWRs. Because of unique RBMK designs the application of this code to RBMK-1500 encountered several problems. A successful best estimate RELAP5 model of the Ignalina NPP has been developed. This model includes the reactor main circulation circuit (MCC) and reactor control and protection system required for this kind of transient analysis. Benchmark analysis of all operating main circulation pump (MCP) trip events was performed. During the analysis the characteristics of isolation control valves and MCP throttling regulating valves were established. Comparison of calculated and measured parameters was also used to establish realistic resistances of different MCC components and realistic behaviour of the controllers of the reactor systems. Calculations performed with the RELAP5 model, which includes these modifications, compare favourably with plant data.  相似文献   

8.
The RELAP5 code is widely used for thermal hydraulic studies of commercial nuclear power plants. Current investigations and code adaptations have demonstrated that the RELAP5 code can be also applied for thermal hydraulic analysis of nuclear research reactors with good predictions. Therefore, as a contribution to the assessment of RELAP5/MOD3.3 for research reactors analysis, this work presents steady-state and transient calculation results performed using a RELAP5 model to simulate the IPR-R1 TRIGA research reactor at 50 kilowatts (kW) of power operation. The reactor is located in the Nuclear Technology Development Center (CDTN), Brazil. It is a 250 kW, light water moderated and cooled, graphite-reflected, open pool type research reactor. The development and the assessment of a RELAP5 model for the IPR-R1 TRIGA are presented. Experimental data were considered in the process of the RELAP5 model validation. The RELAP5 results were also compared with calculated data from the STHIRP-1 (Research Reactors Thermal Hydraulic Simulation) code. The results obtained have shown that the RELAP5 model for the IPR-R1 TRIGA reproduces the actual steady-state reactor behavior in good agreement with the available data.  相似文献   

9.
This paper provides a comparison between the PSB test facility experimental results obtained during the simulation of loss of feed water transient (LOFW) and the calculation results received by INRNE computer model of the same test facility. Integral thermal-hydraulic PSB-VVER test facility located at Electrogorsk Research and Engineering Center on NPPs Safety (EREC) was put in operation in 1998. The structure of the test facility allows experimental studies under steady state, transient and accident conditions.RELAP5/MOD3.2 computer code has been used to simulate the loss of feed water transient in a PSB-VVER model. This model was developed at the Institute for Nuclear Research and Nuclear Energy for simulation of loss of feed water transient.The objective of the experiment “loss of feed water”, which has been performed at PSB-VVER test facility is simulation of Kozloduy NPP LOFW transient. One of the main requirements to the experiment scenario has been to reproduce all main events and phenomena that occurred in Kozloduy NPP during the LOFW transient. Analyzing the PSB-VVER test with a RELAP5/MOD3.2 computer code as a standard problem allows investigating the phenomena included in the VVER code validation matrix as “integral system effects” and ”natural circulation“. For assessment of the RELAP5 capability to predict the “Integral system effect” phenomenon the following RELAP5 quantities are compared with external trends: the primary pressure and the hot and cold leg temperatures. In order to assess the RELAP5 capability to predict the “Natural circulation” phenomenon the hot and cold leg temperatures behavior have been investigated.This report was possible through the participation of leading specialists from Kozloduy NPP and with the support of Argonne National Laboratory (ANL), under the International Nuclear Safety Program (INSP) of the United States Department of Energy.  相似文献   

10.
The most dangerous beyond design basis accidents for RBMK reactors, leading to the worst consequences, are related to the loss of long-term heat removal from the core. Due to a specific design of RBMK, there are a few possibilities for heat removal from reactor core by non-regular means: removal of heat from graphite stack by reactor gas circuit, removal of heat from reactor core using control rods cooling circuit, depressurisation of reactor cooling system, supply of water into cooling system from low pressure water sources, etc. This paper presents the analysis of such heat removal by employing RELAP5, RELAP5-3D and RELAP/SCDAPSIM codes. The analysis was performed for Ignalina nuclear power plant with RBMK-1500 reactor. The analysis of result shows that the restoration of water supply into control rod channels enables to remove 10-30 MW of the generated heat from the reactor core. This amount of removed heat is comparable with reactor decay heat in long-term period and allows to slowdown the core heat-up process. However, the injection of water to reactor cooling system is considered as main strategy, which should be considered in RBMK-1500 accident management procedure.  相似文献   

11.
To increase the accuracy of predicted reactivity effects and coefficients for the unit equipped with a RBMK-1500 type reactor at Ignalina NPP, the calculation route used to generate the library of nuclear data constants applied in the neutronic/thermal hydraulic analysis has been updated with a modern version of the WIMS lattice code, WIMS8. The previously available two group library used with the QUABOX/CUBBOX-HYCA code, adapted to model the physical and nuclear processes in a RBMK-1500 reactor core, was created using the freely available WIMSD reactor physics cell code and its associated nuclear data library. In this article, the results that are obtained under the performance of the new two group cross-section library generated with WIMS8 for RBMK-1500 design core are presented. This discussion is mostly concentrated on the prediction of the key physics parameter for the RBMK type reactor, the void reactivity coefficient, as this parameter has been underestimated, especially at higher fuel irradiation.  相似文献   

12.
This paper presents the work analysis of the thermal-hydraulic parameters behavior in the RBMK-1500 reactor cavity (RC) and other connected volumes in the case of fuel channels ruptures. The analysis is performed with CONTAIN code using the models of accident localization system (ALS) and reactor cavity venting system (RCVS). The RCVS capacity is assessed and expressed as a number of ruptured fuel channels at which the integrity of RC is maintained. The uncertainty analysis of pressure behavior in RC during multiple fuel channel rupture was performed. The initial and boundary conditions and the code models were selected and their influence on the results is estimated.Calculation of coolant mass and energy release to the reactor cavity in case of fuel channels rupture performed using the main circulation circuit model of Ignalina NPP, which was developed by employing state-of-the-art code RELAP5/MOD3.2 [Fletcher et al., RELAP5/MOD3 code manual user’s guidelines, Idaho National Engineering Lab., NUREG/CR-5535 (1992)]. These results were applied further as the initial data for the analysis of the thermal-hydraulic parameters behavior in the affected compartments employing CONTAIN code.  相似文献   

13.
先进压水堆的一个显著特点是非能动系统的高可靠性,评价这些系统的运行特性以及系统分析程序(如RELAP5等)的计算能力是非常重要的,中国核动力研究设计院设计建造了原理性的非能动堆芯应急冷却系统实验装置,并完成了相关实验研究,取得一批有价值的数据,本文用RELAP5/MOD3.2程序对实验过程进行了模拟分析。通过计算结果与实验结果的比较,初步评价了RELAP5/MOD3.2程序的计算能力。  相似文献   

14.
Numerical models of a natural circulation test facility and its prototype have been developed with RELAP5/MOD3.4 code and verified for their grid independence by nodal sensitivity studies. The model of the test facility has been validated for its steady state as well as transient predictions with the help of experimental observations. The transient predictions and parametric trends obtained by the numerical model of the prototype have been compared with those of the numerical model of the test facility. Thus, the ability of RELAP5 code to predict the transients during startup of a natural circulation boiling water reactor is verified. A powering procedure for the test facility has been conceptualized with the help of its RELAP5 model and demonstrated experimentally. Based on this, a similar powering procedure for the prototype has been proposed and simulated numerically with its RELAP5 model.  相似文献   

15.
The paper describes analyses performed with the Reactor Excursion and Leak Analysis Package 5 (RELAP5) computer code to investigate pressurized thermal shock transients for the H.B. Robinson pressurized water reactor. The computer models and their application to 180 transients are described. Reactor vessel downcomer temperature and pressure histories for five transient groups are presented.  相似文献   

16.
The article presents comparative sensitivity study of the Ignalina NPP RBMK-1500 reactor one group distribution header complete blockage accident model. The accident model was developed by RELAP5 thermal-hydraulic code and the accident scenario is one of the scenarios analyzed in the RBMK reactor safety analysis report. The sensitivity study comprised of the Fourier amplitude sensitivity test and the random sample based sensitivity measures (correlation coefficients and standardized regression coefficients). Two types of the model output were investigated: maximum temperature and dynamic temperature change during the progression of the accident. In addition, the effect of the input parameter distribution of different truncation levels and the effect of double standard deviation to the sensitivity results were studied.  相似文献   

17.
This paper presents the development and validation of a MNSR-RELAP5 model. MNSR is a 30 kW, light-water moderated and cooled, beryllium-reflected, tank in pool type research reactor. A RELAP5 model was set up to simulate the entire MNSR system. The model represents all reactor components of primary and secondary loops with the corresponding neutronic and thermal hydraulic characteristics. Under the MNSR operation conditions of natural circulation, normal operation, step reactivity transients and reactivity insertion accidents are simulated.  相似文献   

18.
利用经济发展与合作组织核能机构(OECD/NEA)压水堆堆芯弹棒瞬态基准题对RELAP5-TDNK进行了验证.使用RELAP5-TDNK建立了弹棒基准题模型,分析了两种弹棒问题,对程序的数据交换能力、耦合方法和瞬态事故分析能力进行了检验.与国际上多种程序进行比较,结果表明:RELAP5-TDNK程序模拟结果较好,能够分析事故或瞬态过程中堆芯内局部功率和热工参数的相互作用,具有分析强反馈现象的能力.  相似文献   

19.
《Annals of Nuclear Energy》2005,32(16):1786-1797
This paper describes validation of a computer model that has been developed for VVER 440 Nuclear Power Plant (NPP) for use with RELAP5/MOD 3.2 computer code in the analysis of the following transient: “Control rod assembly drops to fully inserted position”.This validation is a process that compares the analytical results obtained by RELAP5/MOD3.2 model of the VVER 440 with experimental transient data received from Kozloduy NPP, Unit #2. The model of VVER 440 was developed at the the Institute for Nuclear Research and Nuclear Energy for analyses of operational occurrences, abnormal events and design basis scenarios. It will provide a significant analytical capability for the Bulgarian technical specialists located at the Kozloduy NPP.The criteria used in selecting transient are: importance to safety, availability and suitability of data followed by suitability for RELAP5 code validation. The comparisons between the RELAP5 results and the test data indicate good agreement.  相似文献   

20.
Eight main circulation pumps (MCPs) are employed for the cooling water forced circulation through the RBMK-1500 reactor at the Ignalina nuclear power plant (NPP). There have been a few events when one or more MCPs were inadvertently tripped.This paper presents investigation of a one MCP trip event and all MCPs’ trip events at Ignalina NPP. Thermal-hydraulic analysis was conducted using the best estimate system code RELAP5/MOD3.3. Uncertainty and sensitivity analysis of flow energy loss in different parts of the main circulation circuit (MCC), initial conditions and code-selected models was performed. Such analysis allows to estimate the influence of separate parameters on the calculation results and find those modelling parameters that have the largest impact on the investigated events. Uncertainty analysis indicates that natural circulation provides adequate cooling in the case of all MCPs tripped, and that the reactor is reliably cooled by forced circulation in the case of a single tripped MCP. On the basis of this analysis, recommendations for the further improvement of model are developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号