首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Stable operations of single direct current(DC) discharge, single radio frequency(RF) discharge and DC?+?RF hybrid discharge are achieved in a specially-designed DC enhanced inductivelycoupled plasma(DCE-ICP) source. Their plasma characteristics, such as electron density,electron temperature and the electron density spatial distribution profiles are investigated and compared experimentally at different gas pressures. It is found that under the condition of single RF discharge, the electron density distribution profiles show a ‘convex' shape and ‘saddle' shape at gas pressures of 3 m Torr and 150 m Torr respectively. This result can be attributed to the transition of electron kinetics from nonlocal to local kinetics with an increase in gas pressure.Moreover, in the operation of DC?+?RF hybrid discharge at different gas pressures, the DC discharge has different effects on plasma uniformity. The plasma uniformity can be improved by modulating DC power at a high pressure of 150 m Torr where local electron kinetics is dominant,whereas plasma uniformity deteriorates at a low pressure of 3 m Torr where nonlocal electron kinetics prevails. This phenomenon, as analyzed, is due to the obvious nonlinear enhancement effect of electron density at the chamber center, and the inherent radial distribution difference in the electron density with single RF discharge at different gas pressures.  相似文献   

2.
It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present a direct experimental diagnostic of the nonlinear standing waves and bulk ohmic electron power absorption dynamics in low pressure CCP discharges for different driving frequencies of 13.56,30,and 60 MHz.The design,principle,calibration,and validation of the probe are described in detail.Spatial structures of the harmonics of the magnetic field,determined by the magnetic probe,were used to calculate the distributions of the harmonic current and the corresponding ohmic electron power deposition,providing insights into the behavior of nonlinear harmonics.At a low driving frequency,i.e.13.56 MHz,no remarkable nonlinear standing waves were identified and the bulk ohmic electron power absorption was observed to be negligible.The harmonic magnetic field/current was found to increase dramatically with the driving frequency,due to decreased sheath reactance and more remarkable nonlinear standing waves at a higher driving frequency,leading to the enhancements of the ohmic heating and the plasma density in the bulk,specifically at the electrode center.At a high driving frequency,i.e.60 MHz,the high-order harmonic current density and the corresponding ohmic electron power absorption exhibited a similar node structure,with the main peak on axis,and one or more minor peaks between the electrode center and the edge,contributing to the center-high profile of the plasma density.  相似文献   

3.
The effects of driving frequency on plasma parameters and electron heating efficiency are studied in cylindrical inductively coupled plasma (ICP) source. Measurements are made in an Ar discharge for driving frequency at 13.56/2 MHz, and pressures of 0.4–1.2 Pa. In 13.56 MHz discharge, higher electron density (ne) and higher electron temperature (Te) are observed in comparison with 2 MHz discharge at 0.6–1.2 Pa. However, slightly higherne andTe are observed in 2 MHz discharge at 0.4 Pa. This observation is explained by enhanced electron heating efficiency due to the resonance between the oscillation of 2 MHz electromagnetic field and electron-neutral collision process at 0.4 Pa. It is also found that the variation ofTe distribution is different in 13.56 and 2 MHz discharge. For ICP at 13.56 MHz, Te shows an edge-high profile at 0.4–1.2 Pa. For 2 MHz discharge,Te remains an edge-high distribution at 0.4–0.8 Pa. However, the distribution pattern involves into a center-high profile at 0.9–1.2 Pa. The spatial profiles ofne remain a center-high shape in both 13.56 and 2 MHz discharges, which indicates the nonlocal kinetics at low pressures. Better uniformity could be achieved by using 2 MHz discharge. The effects of gas pressure on plasma parameters are also examined. An increase in gas pressure necessitates the rise ofne in both 13.56 and 2 MHz discharges. Meanwhile, Te drops when gas pressure increases and shows a flatter distribution at higher pressure.  相似文献   

4.
In this paper, Maxwell equations are coupled with a radially localized global model and an analytical sheath model to investigate the electromagnetic effects under various frequencies and electron powers in large-area very high frequency symmetric capacitive argon discharges.Simulation results indicate that both the vacuum wavelength and the sheath width decrease with frequency, leading to the reduced surface wavelength. As a result, the standing wave effect becomes pronounced, causing the fact that the radial profiles of the electron density, radio frequency voltage, and sheath width shift from uniform over center-high to multiple-node. When the frequency is close to or higher than the series resonance frequency, the surface waves cannot propagate to the radial center because of the significant radial damping. Due to the lack of power deposition near the radial center, the electron density is nearly zero there, i.e. the stop band effect. As power increases, the higher electron density leads to the decrease of the skin depth.Therefore, the importance of the skin effect gradually exceeds that of the standing wave effect,giving rise to the transition from the center-high to edge-high electron density profiles. The method proposed in this work could help to predict the plasma distribution under different discharge conditions in a few minutes, which is of significant importance in optimizing the plasma processing.  相似文献   

5.
Local measurement of plasma radial uniformity was performed in a dual frequency capacitively coupled argon plasma (DF-CCP) reactor using an optical probe. The optical probe collects the light emission from a small separate volume in plasma, thus enabling to diagnose the plasma uniformity for different experimental parameters. Both the gas pressure and the low-frequency (LF) power have apparent effects on the radial uniformity of argon plasma. With the increase in either pressure or LF power, the emission profiles changed from a bell-shaped to a double-peak distribution. The influence of a fused-silica ring around the electrodes on the plasma uniformity was also studied using the optical probe. Possible reasons that result in nonuniform plasmas in our experiments are discussed.  相似文献   

6.
The pre-ionized 60 MHz very-high-frequency (VHF) magnetron discharge at low pressure, assisted by inductively coupled plasma (ICP) discharge, was developed. The measurement of ion flux density and ion energy to the substrate was carried out by a retarding field energy analyzer. The electric characteristics of discharge were also investigated by voltage–current probe technique. It was found that by reducing the discharge pressure of VHF magnetron discharge from 5 to 1 Pa, the ion flux density increased about four times, meanwhile the ion energy also increased doubly. The electric characteristics of discharge also showed that a little improvement of sputtering effectiveness was achieved by reducing discharge pressure. Therefore, the deposition property of VHF (60 MHz) magnetron sputtering can be improved by reducing the discharge pressure using the ICP-assisted pre-ionized discharge.  相似文献   

7.
The effects of coil and dielectric window structures on the plasma distribution are examined in a cylindrically symmetric planar inductively coupled plasma(ICP). A two-dimensional(2 D) fluid model is employed to investigate the design issues of ICP source for etching. When the gradient coil structure is applied at 400 W and 20 mTorr, the ionization rate caused by the power deposition decreases at the reactor center as compared to that in a reactor with a planar coil above the planar dielectric window, and a rather uniform plasma is obtained. However, for the vertical coil geometry, all the coils move to the position of the outermost coil, and the peaks of the power deposition and ionization rate appear at the radial edge of the substrate. In this case, the plasma density is characterized by an edge-high profile. Further, it is observed that the plasma uniformity is improved by increasing the source power under a gas pressure of 20 mTorr and becomes better when the gas pressure increases to 30 mTorr with the source power being fixed at400 W in the gradient coil configuration, but the uniformity of plasma worsens with the rising source power or pressure due to the strong localization in the vertical coil geometry. Moreover,when the discharge is sustained in a reactor with a stepped dielectric window at r = 0.135 m, the best plasma uniformity is obtained at 400 W and 20 m Torr because the ionization rate is enhanced at the outermost coil, and the dielectric window at r = 0.135 m blocks the diffusion of plasma towards the axis. In addition, higher source power and lower gas pressure produce more uniform plasma for the designs with a stepped window near the symmetry axis. When the dielectric window is stepped at r = 0.135 m, the non-uniformity of plasma initially decreases and then increases with the increase in source power or gas pressure. When the dielectric window is stepped at the radial edge of the chamber, the plasma uniformity is improved by increasing the source power and gas pressure due to the enhanced ionization at the larger radius caused by the severe localization.  相似文献   

8.
The scattering characteristics of microwaves(MWs) by an underdense inhomogeneous plasma column have been investigated.The plasma column is generated by hollow cathode discharge(HCD) in a glass tube filled with low pressure argon.The plasma density in the column can be varied by adjusting the discharge current.The scattering power of X-band MWs by the column is measured at different discharge currents and receiving angles.The results show that the column can affect the properties of scattering wave significantly regardless of its plasma frequency much lower than the incident wave frequency.The power peak of the scattering wave shifts away from 0°to about ±15odirection.The finite-different time-domain(FDTD) method is employed to analyze the wave scattering by plasma column with different electron density distributions.The reflected MW power from a metal plate located behind the column is also measured to investigate the scattering effect on reducing MW reflectivity of a metal target.This study is expected to deepen the understanding of plasma-electromagnetic wave interaction and expand the applications concerning plasma antenna and plasma stealth.  相似文献   

9.
The effect of the frequency and power of the bias applied to the substrate on plasma properties in 60 MHz(VHF) magnetron sputtering was investigated.The plasma properties include the ion velocity distribution function(IVDF),electron energy probability function(EEPF),electron density n_e,ion flux Γ_i,and effective electron temperature T_(eff).These parameters were measured by a retarding field energy analyzer and a Langmuir probe in the 60 MHz magnetron sputtering,assisted with 13.56 MHz or 27.12 MHz substrate bias.The 13.56 MHz substrate bias led to broadening and multi-peaks IVDFs,Maxwellian EEPFs,as well as high electron density,ion flux,and low electron temperature.The 27.12 MHz substrate bias led to a further increase of electron density and ion flux,but made the IVDFs narrow.Therefore,the frequency of the substrate bias was a possible way to control the plasma properties in VHF magnetron sputtering.  相似文献   

10.
The capacitively coupled radio frequency(CCRF)plasma has been widely used in various fields.In some cases,it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma.In this paper,a glass vacuum chamber and a pair of plate electrodes were designed and fabricated,using 13.56 MHz radio frequency(RF)discharge technology to ionize the working gas of Ar.This discharge was mathematically described with equivalent circuit model.The discharge voltage and current of the plasma were measured atdifferent pressures and different powers.Based on the capacitively coupled homogeneous discharge model,the equivalent circuit and the analytical formula were established.The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation.The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa,the average electron temperature is about 1.7–2.1 e V and the average electron density is about 0.5?×?10~(17)–3.6?×?10~(17)m~(-3).Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.  相似文献   

11.
The efficiency of radio-frequency (RF) power absorption, RF magnetic field structure and plasma parameters were measured in cylindrical inductive RF plasma sources 20 cm in diameter and 22, 32, 53 cm in length with a low value external magnetic field. The experiments were carried out in argon at pressures of 13–140 mPa. The RF power supply changed from 200 W to 800 W. The spiral antenna was used for sustaining the discharge. It was shown that efficiency of RF power absorption depended nonlinearly on the external magnetic field values. At maximal values of the RF power absorption efficiency, the axial distributions of longitudinal Bz and azimuthalBcomponents of RF magnetic field manifested the formation of the partially standing wave with a half wavelength close to 8 cm. At the same conditions, the axial dependence of the radial RF magnetic field component Br differed drastically. It was concluded that the Bz and Bamplitudes were largely determined by the RF field of Trivelpiece-Gould wave, while Br amplitude represented the radial RF field of the helicon wave.  相似文献   

12.
The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform,parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and "bumpon-tail" profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould(TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution.  相似文献   

13.
This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 MHz. The simulations were carried out by means of a code,HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from 10~(11) cm~(-3) to 10~(13) cm~(-3). The magnetic field was 200, 400, 600 and 1000 G. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece–Gould(TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile.Power deposition was considerably asymmetric when the n/B_0 ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately n_0 =10~(11) cm~(-3), irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was 10~(12) cm~(-3). The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.  相似文献   

14.
The effect of gas pressure on ion energy distribution at the substrate side of Ag target radio-frequency (RF) and very-high-frequency (VHF) magnetron sputtering discharge was investigated. At lower pressure, the evolution of maximum ion energy (E) with discharge voltage (V) varied with the excitation frequency, due to the joint contribution of the ion generation in the bulk plasma and the ion movement across the sheath related to the ion transit sheath time τi and RF period τRF. At higher pressure, the evolution of E–V relationships did not vary with the excitation frequency, due to the balance between the energy lost through collisions and the energy gained by acceleration in the electric field. Therefore, for RF and VHF magnetron discharge, lower gas pressure can have a clear influence on the E–V relationship.  相似文献   

15.
Whereas high voltage and current create a rough environment for switch electrodes in pulse power technology, the switch requires the most maintenance or replacement after a short time. In this paper we investigate the effects of magnetic and shock pressures created by high power electric arc between a rail gap switch with copper electrodes at the APF plasma focus device. As studied by others, the shock pressure is some order of magnitude higher than the magnetic pressure after electric arc generation. We calculated the magnetic pressure, electric arc radius, time dependent arc velocity, and also time dependent shock pressure created by an oscillating current discharge applied across the rail gap electrodes surface. Modeling included a MathCAD analysis of the diverging wave front through the electrode and the results show that the shock wave pressure induced after the electric arc has a serious destructive effect on our switch surface.  相似文献   

16.
Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed under well-defined discharge conditions(chamber geometry,input power,AC power frequency,and external electrical characteristics).The problems encountered in describing the characteristics of AC discharge in many probe diagnostic methods were addressed by using an improved probe diagnostics design.This design can also be applied to the measurement of plasma parameters in many kinds of plasma sources in which the probe potential fluctuates with the discharge current.Several parameters of the hollow electrode AC helium discharge plasma were measured,including the plasma density,electron temperature,plasma density profiles,and changes in plasma density at different input power values and helium pressures.The characteristics of the coaxial gridded hollow electrode plasma determined by the experiments are suitable for comparison with plasma simulations,and for use in many applications of hollow cathode plasma.  相似文献   

17.
In this paper, we present a theoretical study on the discharge characteristics of radio-frequency discharges at atmospheric pressure driven by a higher frequency of 40.68 MHz while the electrode gap is altered. Based on the analytical equations and simulation data from a one-dimensional fluid model, an optimal gap between electrodes, at which the largest electron density is obtained, can be observed under a constant power condition; however, as the electrode gap increases the time-averaged electron temperature decreases, and the underpinning physics is also discussed based on the simulation results. This study indicates that at a constant power by choosing an appropriate electrode spacing, the rf discharge can be effectively optimized at atmospheric pressure.  相似文献   

18.
To study the heating mechanism of electron cyclotron resonance thruster(ECRT) immersed in a non-uniform magnetic field, experiments and simulations are performed based on an electron cyclotron resonance plasma source at ASIPP. It is found that the first harmonic of electron cyclotron resonance is essential for plasma ignition at high magnetic field(0.0875 T), while the plasma can sustain without the first and second harmonics of electron cyclotron resonance at low magnetic field(till 0.0170 T). Evidence of radial hollow density profile indicates that upper hybrid resonance, which has strong edge heating effect, is the heating mechanism of low-field ECRT. The heating mode transition from electron cyclotron resonance to upper hybrid resonance is also revealed. Interestingly, the evolutions of electron temperature and electron density with input power experience a ‘delayed' jump, which may be correlated with the different power levels required for cyclotron and ionization. Moreover, when the field strength decreased, the variation of electron density behaves in an opposite trend with that of electron temperature,implying a possible competition of power deposition between them. The present work is of great interest for understanding the plasma discharge in ECRT especially immersed in a non-uniform magnetic field, and designing efficient ECRT using low magnetic field for economic space applications.  相似文献   

19.
A spark generator was employed to assist surface barrier discharge (SBD) in nitrogen at atmospheric pressure. The influence of spark discharge on the SBD electrical behavior is investigated by means of volt-ampere characteristics. Also, the electron density of plasma in the filament of each SBD arrangement is determined by plasma radiation method. It is found that the filaments in spark-assistant SBD are much stronger, while the corresponding mean electron density is much lower. Results show that the spark generator can improve the uniformity of SBD in atmospheric nitrogen in a particular range of applied frequency.  相似文献   

20.
The effect of the substrate holder feature dimensions on plasma density(ne), power density(Qmw) and gas temperature(T) of a discharge marginal plasma(a plasma caused by marginal discharge) and homogeneous plasma were investigated for the microwave plasma chemical vapor deposition process. Our simulations show that decreasing the dimensions of the substrate holder in a radical direction and increasing its dimension in the direction of the axis helps to produce marginally inhomogeneous plasma. When the marginal discharge appears, the maximum plasma density and power density appear at the edge of the substrate. The gas temperature increases until a marginally inhomogeneous plasma develops. The marginally inhomogeneous plasma can be avoided using a movable substrate holder that can tune the plasma density, power density and gas temperature. It can also ensure that the power density and electron density are as high as possible with uniform distribution of plasma. Moreover, both inhomogeneous and homogeneous diamond films were prepared using a new substrate holder with a diameter of 30 mm. The observation of inhomogeneous diamond films indicates that the marginal discharge can limit the deposition rate in the central part of the diamond film. The successfully produced homogeneous diamond films show that by using a substrate holder it is possible to deposit diamond film at 7.2 μm h~(–1)at 2.5 kW microwave power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号