首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
南海红树林内源真菌Fusarium sp.#ZZF51生物吸附铀(Ⅵ)   总被引:2,自引:0,他引:2  
研究了南海红树林内源真菌Fusarium sp.#ZZF51富集铀(Ⅵ)的特性.初步结果表明,受试菌吸附铀(Ⅵ)的吸附平衡时间为60 min,常温常压下吸附最佳条件为pH=4.0,铀(Ⅵ)的初始质量浓度为50 mg/L,吸附时间为60 min,铀(Ⅵ)的吸附容量为15.46 mg/g.Langmuir和Freundli...  相似文献   

2.
放射性含铀废水会带来环境污染风险,合理有效处理含铀废水十分必要。本研究通过吸附实验探究偕胺肟聚丙烯腈(AO-PAN)对U(Ⅵ)的吸附特性,系统研究吸附温度、初始浓度、吸附时间对AO-PAN吸附U(Ⅵ)的影响。结果表明,随着吸附温度升高,AO-PAN对U(Ⅵ)的吸附量逐渐增加,在343K温度时吸附量达201.6mg/g。不同温度条件下随着吸附时间增加,AO-PAN对U(Ⅵ)的吸附量逐渐升高,吸附初始时吸附速率较快,随着吸附逐渐进行吸附曲线逐渐趋于平缓,最终达到吸附平衡。AO-PAN对铀的吸附量随溶液中初始浓度的增加而升高,温度为303K,溶液中初始铀浓度为500mg/L时,AO-PAN对U(Ⅵ)的吸附量达305.8 mg/g。此外,AO-PAN对铀酰离子的吸附符合朗格缪尔(Langmuir)模型,吸附热力学分析表明AO-PAN对铀酰离子的吸附是吸热和自发过程,吸附动力学分析表明AO-PAN对铀酰离子的吸附行为遵循准二级动力学模型,吸附速率控制机理分析表明AO-PAN对U(Ⅵ)的吸附初始受颗粒内扩散过程控制,随着吸附不断进行吸附过程逐渐由颗粒内扩散控制变为液膜扩散过程控制。吸附实验结果表明,AO-PAN是一种优良的吸附剂,可以用于吸附废水中U(Ⅵ),吸附过程的模型方程可以用于AO-PAN对U(Ⅵ)吸附过程的分析和计算。  相似文献   

3.
韩磊  马福秋  薛云  矫彩山 《同位素》2019,32(1):13-21
放射性含铀废水会带来环境污染风险,合理有效处理含铀废水十分必要。本研究通过吸附实验探究偕胺肟聚丙烯腈(AO-PAN)对U(Ⅵ)的吸附特性,系统研究吸附温度、初始浓度、吸附时间对AO-PAN吸附U(Ⅵ)的影响。结果表明,随着吸附温度升高,AO-PAN对U(Ⅵ)的吸附量逐渐增加,在343 K温度时吸附量达201.6 mg/g。不同温度条件下随着吸附时间增加,AO-PAN对U(Ⅵ)的吸附量逐渐升高,吸附初始时吸附速率较快,随着吸附逐渐进行吸附曲线逐渐趋于平缓,最终达到吸附平衡。AO-PAN对铀的吸附量随溶液中初始浓度的增加而升高,温度为303 K,溶液中初始铀浓度为500 mg/L时,AO-PAN对U(Ⅵ)的吸附量达305.8 mg/g。此外,AO-PAN对铀酰离子的吸附符合朗格缪尔(Langmuir)模型,吸附热力学分析表明AO-PAN对铀酰离子的吸附是吸热和自发过程,吸附动力学分析表明AO-PAN对铀酰离子的吸附行为遵循准二级动力学模型,吸附速率控制机理分析表明AO-PAN对U(Ⅵ)的吸附初始受颗粒内扩散过程控制,随着吸附不断进行吸附过程逐渐由颗粒内扩散控制变为液膜扩散过程控制。吸附实验结果表明,AO-PAN是一种优良的吸附剂,可以用于吸附废水中U(Ⅵ),吸附过程的模型方程可以用于AO-PAN对U(Ⅵ)吸附过程的分析和计算。  相似文献   

4.
以伊利石为吸附剂,通过吸附实验探究U(Ⅵ)在伊利石上的吸附特征,分别考查了接触时间、吸附剂用量、U(Ⅵ)初始浓度、pH值及温度对吸附的影响。用FT-IR和SEM对吸附前后的伊利石进行表征,研究了U(Ⅵ)在伊利石上吸附的动力学和热力学过程。结果表明:吸附过程在10 h后达到动态平衡;在U(Ⅵ)初始浓度为50 mg/L时,吸附效果最好;最佳吸附剂用量为0.03 g;pH值对伊利石吸附铀的影响显著,最佳pH值为5~6;升高温度有利于U(Ⅵ)在伊利石上的吸附;准二级动力学模型和Langmuir等温吸附模型对U(Ⅵ)在伊利石上的吸附过程拟合效果较好,吸附过程主要为表面络合作用,属于单层吸附。  相似文献   

5.
合成了一种BiCuSO基新型材料,通过批次实验探究pH、振荡时间、初始U(Ⅵ)浓度、温度对吸附铀的影响。结果表明,当pH=6.5、t=120 min时吸附效果最佳,最大吸附量可达572.6 mg/g(ρ0(U(Ⅵ))=1000 mg/L)。通过动力学及热力学模拟可得,该吸附符合准二级动力学及Freundlich等温吸附模型,且在不同温度下ΔG<0,表明反应为自发反应。此外,利用X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)等表征手段对吸附前后的样品进行了表征,探究了其中的吸附机理,为寻求新材料处理放射性废液中的铀提供了理论支撑。  相似文献   

6.
以伊利石和高岭石为吸附剂,通过静态吸附法研究了其对U(Ⅵ)的吸附特性。考察了接触时间、初始浓度、吸附剂质量、pH、温度、离子种类、腐殖酸等对其吸附效果的影响;采用红外光谱(FTIR) 对伊利石和高岭石的结构进行了表征。研究结果表明:伊利石和高岭石对U(Ⅵ)具有很强的吸附能力,在10 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.04 g、pH=5的条件下,伊利石对U(Ⅵ)的吸附效果最好;在12 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.01 g、pH=5的条件下,高岭石对U(Ⅵ)的吸附效果最好;随着温度的升高,伊利石和高岭石对U(Ⅵ)的吸附能力不断增强,尤其是伊利石;溶液中Mg2+、CO2-3、HCO-3显著降低了伊利石和高岭石对U(Ⅵ)的吸附效果;随着腐殖酸浓度的增加,伊利石对U(Ⅵ)的吸附能力提高,高岭石对U(Ⅵ)的吸附能力降低。  相似文献   

7.
以伊利石为吸附剂,通过吸附实验探究U(Ⅵ)在伊利石上的吸附特征,分别考查了接触时间、吸附剂用量、U(Ⅵ)初始浓度、pH值及温度对吸附的影响。用FT-IR和SEM对吸附前后的伊利石进行表征,研究了U(Ⅵ)在伊利石上吸附的动力学和热力学过程。结果表明:吸附过程在10 h后达到动态平衡;在U(Ⅵ)初始浓度为50 mg/L时,吸附效果最好;最佳吸附剂用量为0.03 g;pH值对伊利石吸附铀的影响显著,最佳pH值为5~6;升高温度有利于U(Ⅵ)在伊利石上的吸附;准二级动力学模型和Langmuir等温吸附模型对U(Ⅵ)在伊利石上的吸附过程拟合效果较好,吸附过程主要为表面络合作用,属于单层吸附。  相似文献   

8.
纳米零价铁去除溶液中U(Ⅵ)的研究   总被引:4,自引:0,他引:4  
采用KBH4还原Fe3+制备纳米级零价铁,去除溶液中以铀酰离子形式(UO22+)存在的六价铀[U(Ⅵ)],考察纳米零价铁(NZVI)投加量、溶液pH值、U(Ⅵ)初始质量浓度以及时间等因素对铀去除效果的影响。实验结果表明:NZVI对U(Ⅵ)有很好的去除效果,当溶液pH=5.5、投加量为1.0 g/L、U(Ⅵ)初始质量浓度为45 mg/L、吸附时间为2.5 h时,对U(Ⅵ)的去除率为98.98%,吸附量为27.22 mg.g-1。  相似文献   

9.
以高岭土为研究对象,采用静态吸附的实验方法,探讨了吸附时间、铀(Ⅵ)的初始浓度、吸附剂质量、pH值、离子种类、腐殖酸质量等因素对铀(Ⅵ)吸附的影响。结果表明:高岭土对铀(Ⅵ)的吸附性能较好,在6 h时就达到了平衡,最佳铀(Ⅵ)的初始浓度为60μg?m L~(-1);最佳的吸附剂质量为0.01 g;随着pH值的增大,高岭土对铀(Ⅵ)的吸附效果先增大,后减小,pH=5时,吸附效果最大;溶液中K~+、NO_3~-、Na~+和SO_4~(2-)对铀(Ⅵ)的吸附影响较小,Mg~(2+)、CO_3~(2-)和HCO_3~-对铀(Ⅵ)的吸附有抑制效果,不利于吸附;溶液中腐殖酸质量的增加会抑制高岭土对铀(Ⅵ)的吸附。实验结果同时表明:准二级动力学模型较准一级动力学模型能更好地描述U(Ⅵ)在高岭土上的吸附。  相似文献   

10.
以壳聚糖(CTS)和生物炭(AC)为原料,采用原位沉淀法制备了壳聚糖-生物炭(CTS-AC)复合材料,研究了吸附时间、铀初始浓度、初始pH值、温度和干扰离子等因素对CTS-AC吸附U(Ⅵ)的影响,探讨了CTS-AC对U(Ⅵ)的吸附动力学、等温线,采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM-EDS)及比表面积分析(BET)等手段进行了相关机理分析。实验结果表明,CTS-AC吸附U(Ⅵ)的最佳条件为:pH=4、CTS-AC投加量0.8~1 g/L、吸附时间240 min,在此条件下,最大吸附率可达94.85%。CTS-AC对U(Ⅵ)的吸附等温线模型符合Langmuir模型,U(Ⅵ)的吸附动力学符合准二级模型;高浓度Cu~(2+)对CTS-AC吸附U(Ⅵ)的抑制作用明显;FT-IR、XRD和EDS结果表明,CTS的负载未改变AC的原结构,仅增大了其孔径、增加了结合位点。CTS-AC对U(Ⅵ)的吸附机制为配位作用以及离子交换。  相似文献   

11.
为了探究磷酸三钙对U(Ⅵ)的吸附性能与机理,以碳酸钙和磷酸氢二铵为原料,采用固相法合成磷酸三钙粉末,并利用X射线衍射仪(XRD)、傅里叶转换红外光谱仪(FTIR)、扫描电子显微镜(SEM)和比表面积分析仪(BET)对其理化特性进行表征。研究pH、固液比、吸附时间、U(Ⅵ)初始浓度、吸附温度等因素对磷酸三钙去除U(Ⅵ)性能的影响。采用动力学吸附、等温吸附、热力学吸附等模型及XRD、FTIR、X射线光电子能谱(XPS)、SEM、能谱仪(EDS)、电感耦合等离子体发射光谱仪(ICP-OES)等表征手段揭示磷酸三钙去除U(Ⅵ)的机理。结果表明:在pH=3.0、固液比0.1 g/L、吸附时间60 min、U(Ⅵ)初始质量浓度120 mg/L、吸附温度308 K的条件下,磷酸三钙对U(Ⅵ)的平衡吸附容量达到999.25 mg/g。该吸附过程符合准二级动力学模型(化学吸附)和Langmuir模型(单层吸附),且为自发吸热过程。磷酸三钙对U(Ⅵ)的去除机理为溶解和沉淀过程:在酸性水溶液中,磷酸三钙溶解出的Ca^(2+)和PO^(3-)_(4)与UO_(2)^(2+)发生沉淀反应,在磷酸三钙表面生成准钙铀云母(Ca(UO_(2))_(2)(PO_(4))_(2)·6H 2O)。以上结果表明:磷酸三钙可作为一种有应用前景的用于处理含U(Ⅵ)废水的吸附材料。  相似文献   

12.
以壳聚糖(CTS)和生物炭(AC)为原料,采用原位沉淀法制备了壳聚糖-生物炭(CTS-AC)复合材料,研究了吸附时间、铀初始浓度、初始pH值、温度和干扰离子等因素对CTS-AC吸附U(Ⅵ)的影响,探讨了CTS-AC对U(Ⅵ)的吸附动力学、等温线,采用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM-EDS)及比表面积分析(BET)等手段进行了相关机理分析。实验结果表明,CTS-AC吸附U(Ⅵ)的最佳条件为:pH=4、CTS-AC投加量0.8~1 g/L、吸附时间240 min,在此条件下,最大吸附率可达94.85%。CTS-AC对U(Ⅵ)的吸附等温线模型符合Langmuir模型,U(Ⅵ)的吸附动力学符合准二级模型;高浓度Cu2+对CTS-AC吸附U(Ⅵ)的抑制作用明显;FT-IR、XRD和EDS结果表明,CTS的负载未改变AC的原结构,仅增大了其孔径、增加了结合位点。CTS-AC对U(Ⅵ)的吸附机制为配位作用以及离子交换。  相似文献   

13.
黄钾铁矾的制备及其对U(Ⅵ)的吸附   总被引:1,自引:0,他引:1  
为了研究黄钾铁矾对溶液中U(Ⅵ)的吸附效果,采用一步水热法制备了黄钾铁矾,并利用X射线衍射(XRD)、拉曼光谱(Raman spectrum)、红外光谱(FTIR)和扫描电子显微镜(SEM)等技术表征了材料的理化特性。利用静态吸附实验研究了溶液pH值、离子强度、固液比和U(Ⅵ)初始浓度对吸附过程的影响。结果表明:溶液pH对于U(Ⅵ)的吸附产生较大的影响, 而离子强度则对吸附过程没有影响, 表明黄钾铁矾对U(Ⅵ)的吸附机理为内层表面络合。吸附在100 min内基本达平衡,且符合准二级动力学模型。吸附等温线符合Langmuir等温模型,表明U(Ⅵ)的吸附是单层吸附。在溶液的pH=7.0、298 K时,黄钾铁矾对U(Ⅵ)的最大吸附量为154 mg/g。最佳吸附条件为:固液比1.0 g/L、U(Ⅵ)初始浓度为0.42 mmol/L、298 K、pH=7.0,达到平衡时的吸附量为(76.0±1.4) mg/g(n=3),去除率达到了(88.0±1.3)%(n=3)。以上结果表明,黄钾铁矾可以作为含U(Ⅵ)废水处理的潜在吸附材料。  相似文献   

14.
以高锰酸钾/浓硫酸氧化法轴向切割多壁碳纳米管(MWCNTs)所制备的氧化石墨烯纳米带(GONRs)为原料,采用水热法制备了一种便于固液分离的功能性四氧化三铁/GONRs复合材料(MGONRs),对其进行了SEM、FT-IR、XRD等表征,并考察了其对U(Ⅵ)的吸附性能。探讨了溶液pH值、MGONRs用量、铀初始浓度、吸附时间和温度对MGONRs吸附U(Ⅵ)的影响。结果表明:MGONRs对U(Ⅵ)的吸附过程是与pH值和时间相关的自发的吸热过程;吸附符合准二级动力学模型和Langmuir模型,MGONRs对U(Ⅵ)的吸附量可达123.2 mg/g,且具有良好的再生性能,有望用于从放射性废水中分离和回收铀。  相似文献   

15.
以高庙子膨润土为研究对象,通过静态吸附实验,考查了高庙子膨润土对U(Ⅵ)的吸附特征,研究了接触时间、固液比、铀的初始浓度、pH、离子类型和离子浓度等因素对U(Ⅵ)吸附特征的影响,并讨论了膨润土对U(Ⅵ)的吸附动力学和热力学过程。结果表明:吸附过程在24 h后达到动态平衡;最佳吸附固液比为1:300;最佳吸附初始浓度为40 mg·L~(-1);在pH为5时,膨润土对U(Ⅵ)的吸附效果最好,过酸或过碱都会影响膨润土对U(Ⅵ)的吸附;溶液中Ca~(2+)、CO_3~(2-)显著降低了膨润土对U(Ⅵ)的吸附效果,影响程度随着离子浓度的增加而增大;Freundlich等温吸附模型和准二级动力学模型对吸附过程的拟合效果较好,主要表现为多层吸附。  相似文献   

16.
以工业啤酒酵母为碳源,采用一步法合成了微生物质水热碳锰复合材料(MHTC),并利用XRD、FT-IR和SEM等对材料进行了表征。在此基础上,系统研究了不同C/Mn原子比、初始pH值、接触时间、初始铀浓度对MHTC吸附铀性能的影响。结果表明:C/Mn原子比为1∶10的碳锰复合材料(MHTC-10)对铀的吸附性能最优。在铀初始浓度为50 mg/L、初始pH=4.5条件下,12 h可达吸附平衡,最大吸附量为371 mg/g。吸附过程符合准二级动力学模型以及Freundlich等温模型。热力学数据表明,铀在MHTC-10上的吸附是一自发、放热的过程。该研究结果可为含铀环境中铀的分离富集提供新的思路。  相似文献   

17.
稻壳对铀吸附性能的研究   总被引:7,自引:3,他引:4  
采用稻壳粉末作为吸附剂,进行了模拟含铀废水中U(Ⅵ)吸附实验的研究,考察了稻壳的粒度、溶液的pH、初始浓度、吸附时间、温度及稻壳用量等因素对铀吸附去除率的影响,分析了吸附过程的反应动力学和等温吸附规律,并用扫描电镜、红外光谱及能谱图分析了吸附机理。结果表明:稻壳粉末对铀的吸附平衡时间为4h,且吸附剂粒度越小、温度越高、投加量越大、溶液pH=5左右时越有利于铀的去除;稻壳对U(Ⅵ)的吸附动力学行为可用准二级吸附速率方程来描述,相关系数R2=1;吸附过程符合Freundlich等温吸附方程,相关系数R2=0.9954;稻壳吸附U(Ⅵ)使表面形态发生变化,与U(Ⅵ)相互作用的基团主要是羟基、羧基、P—O和Si—O。综合看来,稻壳对U(Ⅵ)的吸附既存在物理吸附,又存在化学吸附,为混合吸附过程。  相似文献   

18.
通过静态吸附实验,研究了用十六烷基三甲基溴化铵(HDTMA•Br)改性的蛭石对U(Ⅵ)的吸附行为,以及有机改性蛭石(吸附剂)用量、pH值、铀初始质量浓度、吸附时间等因素对有机改性蛭石吸附U(Ⅵ)效果的影响,从热力学和动力学方面对吸附过程进行了分析,并通过FT-IR和SEM探讨了其相关吸附机理。结果表明:增加吸附剂用量、延长吸附时间和降低铀初始质量浓度都能提高有机改性蛭石对铀的去除率,最佳吸附pH值为6.5左右,120 min达到吸附平衡;用絮凝剂协同吸附能提高有机改性蛭石对铀的吸附效果;有机改性蛭石对铀的吸附遵循Langmuir吸附等温线,符合准二级动力学方程。有机改性蛭石吸附铀前后的FT-IR表明,-OH、Si[CDS1]O等基团起重要作用;SEM分析表明,有机改性蛭石吸附U(Ⅵ)引起其形态结构的改变。  相似文献   

19.
地质特种水泥对模拟含铀废液的静态吸附动力学研究   总被引:1,自引:0,他引:1  
针对含铀废液这类具有放射性的特殊废液,本实验选用养护28 d、粒径为200-220μm的水泥颗粒作为吸附剂,通过改变吸附时间t以及pH值,获得地质特种水泥对含铀溶液的静态吸附规律。实验结果表明,地质特种水泥对不同浓度含铀溶液(20 mg·L~(-1)、30 mg·L~(-1)、40 mg·L~(-1))的静态吸附均在第1.5 d基本达到吸附平衡,最大吸附量(q_e)分别达到40.257 mg·g~(-1)、60.423 mg·g~(-1)、80.386 mg·g~(-1),最终静态平衡吸附率高达99.95%;保持铀溶液浓度一定(30 mg·L~(-1)),改变吸附体系的pH值(5、7、9),地质特种水泥对U(Ⅵ)的吸附率均可达到99.50%,无显著差异。以上结果表明,在本实验设定的环境条件下,地质特种水泥对U(Ⅵ)有极强的吸附能力,且其吸附效果基本不受含铀溶液浓度和pH值的影响。同时,静态吸附动力学模型研究表明,伪二级动力学模型能很好地描述地质特种水泥静态吸附铀的全过程(t=0-41 d),其相关系数R~2高达99.99%,表明地质特种水泥对U(Ⅵ)的吸附机理为:吸附速率按照与吸附驱动力(q_e-q_t)的平方呈正比关系进行演变。  相似文献   

20.
甲醛改性多壁碳纳米管吸附铀的性能研究   总被引:1,自引:1,他引:0  
对纯化后的多壁碳纳米管(MWCNTs)采用甲醛进行羟甲基化改性,研究了改性后的MWCNTs对铀的吸附性能,考察了介质酸度、温度、超声时间、溶液初始浓度以及改性MWCNTs加入量对铀的吸附量和吸附率的影响。结果表明,改性MWCNTs在水溶液中的分散性良好,在pH为2.0~7.0范围内,改性MWCNTs对铀的吸附量和吸附率随pH增大而升高。铀的吸附量随初始浓度的增大而升高,铀初始浓度为50 μg/mL时,吸附量达46.44 mg/g,对铀的吸附率达90%以上。温度、超声时间和离子强度对其吸附量影响不大。吸附反应符合Langmuir和Freundlich方程,最大理论吸附容量为55.87 mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号