首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
采用流体动力学软件GASFLOW对AP1000核电厂进行建模,在建模过程中,采用的直角坐标系的设置可以增加系统模型的准确性。采用MAAP计算的DVI(直接注入管线)双端断裂事故源项作为输入,研究不同隔间内氢气风险。结果显示:氢气在安全壳内形成分层现象,且壁面附近氢气浓度较高;除了破口隔间在不足60 s的时间内出现FA(Flame Acceleration)准则数大于1的情况外,其他隔间或其他时间段内均没有出现FA准则数大于1的情况。所有隔间内的DDT(Deflagration to Detonation Transition)准则数均小于1,可以认为所研究的事故工况下,均不存在燃爆风险。全局可燃气体云团的体积大约占了安全壳自由容积的1/30,安全壳内不可能发生全局快燃风险。  相似文献   

2.
核电厂在严重事故期间会产生大量氢气并释放到安全壳内,威胁安全壳的完整性。应用氢气风险分析程序GASFLOW对先进压水堆核电站在大破口失水事故叠加应急堆芯冷却系统失效导致的严重事故期间的氢气行为及风险进行分析。结果表明,当气体释放源位于蒸汽发生器隔间时,氢气流动的主要路径为"蒸汽发生器隔间—穹顶空间—操作平台以下隔间";破口隔间的氢气体积浓度分布与源项氢气体积浓度及射流形态有关,非破口区域的氢气体积浓度呈层状分布,在扩散作用下,层状分布向下推移;蒸汽发生器隔间存在着火焰加速(FA)的可能性,但基本可排除燃爆转变(DDT)的可能性,穹顶区域基本可排除FA和DDT的可能性。  相似文献   

3.
本文利用Gasflow程序对非能动压水堆发生假想的严重事故后,安全壳内的氢气流动、分布和积聚行为进行了计算和分析,对安全壳内各房间的氢气风险进行了评价并给出了降低氢气燃烧风险的建议。计算结果表明,在发生大破口事故中,安全壳内氢气浓度较高的区域为破损蒸汽发生器隔间,内置换料水箱隔间和上部隔间,需要设置消氢系统来降低隔间内的氢气浓度。  相似文献   

4.
根据MELCOR程序对全厂断电诱发的严重事故下安全壳内各隔间的氢气浓度分布的计算结果,参考美国联邦法规关于氢气控制和风险分析的标准,分析安全壳内氢气的燃烧风险。结果表明:安全壳内平均氢气浓度不会导致整体性氢气燃烧,但存在局部燃烧的风险。通过CFD程序对氢气浓度较高的卸压箱隔间进行氢气释放和空间气体流动过程的模拟,得到更细致的卸压箱隔间内氢气浓度场分布,给出氢气聚集区域的准确位置,为采取严重事故缓解措施,设计氢复合器布置方案提供了参考依据。  相似文献   

5.
核安全法规要求控制严重事故下核电厂安全壳内的氢气浓度。除安全壳整体外,局部隔间的氢气浓度同样是关注的重点。本文采用一体化严重事故分析程序对百万千瓦级压水堆核电厂安全壳局部隔间进行建模,分析了不同事故下的氢气风险。结果表明,严重事故下部分隔间短时间内可能存在燃烧风险。本文对降低燃烧风险的方法进行分析计算和筛选,得出的结论可以为安全壳隔间的设计优化提供参考依据。  相似文献   

6.
《核安全》2017,(4)
福岛事故后的核电厂安全审评过程中,国家核安全局对于严重事故下的氢气安全问题提出了更高的要求,从满足当前高标准的氢气安全要求的角度出发,有必要对安全壳内氢气行为开展更为细致深入的研究,开展氢气的三维分析,为集总参数程序的分析结果提供有益补充。本文采用一体化严重事故分析程序和流体力学程序对国产先进压水堆核电厂进行系统建模,选取大破口触发的严重事故序列,对严重事故工况下的氢气行为及氢气控制系统性能进行分析评价。首先采用一体化严重事故分析程序计算氢气产生源项、氢气产生速率和安全壳内氢气浓度分布等,评价安全壳隔间内的氢气风险。并采用计算流体力学程序,进一步对安全壳内重要隔间的氢气分布进行三维分析,研究安全壳内氢气和水蒸汽的行为,获得重要隔间内的流场、温度场、压力场、氢气分布及浓度变化等计算结果。CFD程序在计算气体分布方面要比集总参数程序更加精确和详细,通过更精细地模拟安全壳内的氢气行为,可以为集总参数程序的计算结果提供补充,为氢气控制系统的设计优化和严重事故氢气风险管理等提供有力的支持。  相似文献   

7.
与核电厂安全壳大空间不同,安全壳隔间以及先进小型堆等小尺度空间中,氢气与水蒸气的混合气体流动受到壁面的限制,气流不能充分发展,可能导致氢气在某些位置积聚引发氢气风险。本文采用数值模拟与理论分析相结合的方法对小尺度空间内氢气流动分布特性进行了研究。研究发现,典型工况下小尺度空间上部形成了氢气浓度分布比较均匀的氢气浓度储备区,在中部和下部区域分别为氢气浓度过渡区和高空气浓度区;随着源项气体动量的增大,源项气体进入上部空间的能力增大,导致空间上部区域氢气浓度增大。本研究可为后续先进小型堆的氢气风险研究分析提供支持。   相似文献   

8.
采用一体化严重事故分析工具,对600MWe压水堆核电厂严重事故下氢气风险及拟定的氢气控制系统进行分析。结果表明:相对于小破口失水始发事故和全厂断电始发事故工况,大破口失水始发严重事故堆芯快速熔化,在考虑100%锆 水反应产氢量的条件下,大破口失水始发事故氢气风险较大,有可能发生氢气快速燃烧;在氢气控制系统作用下,发生大破口失水始发严重事故时,安全壳内平均氢气浓度和隔间内氢气浓度低于10%,未达到氢气快速燃烧和爆炸的条件,满足美国联邦法规10CFR中关于氢气控制和风险分析的准则,认为该氢气控制系统是可行、有效的。  相似文献   

9.
采用集总参数分析程序对AP1000核电厂安全壳内氢气点火系统功能进行了分析和验证。在定义的包络事故工况下,氢气最大瞬时释放速率达300kg/min。计算表明:在无点火措施情况下,AP1000安全壳局部隔间的氢气浓度较高,隔间内的气体处于可燃状态,且接近爆燃向爆炸转变(DDT)状态;在实施点火措施情况下,氢气浓度得到有效控制,氢气点火系统能消除严重事故下氢气所引起的风险。  相似文献   

10.
利用计算流体力学(CFD)程序GASFLOW模拟了波动管大破口事故发生后7 000 s内装有22台氢气复合器的秦山二期核电站安全壳内的水蒸汽及氢气行为,得到了不同阶段的特征性流场及氢气浓度的分层情况,给出了所采用的复合器布置方案的稳定消氢速率为20 g/s,并指出了破口所在蒸汽发生器隔间内发生氢气燃烧火焰加速的可能性.同时,计算结果表明,安全壳内构筑物吸热带走了大部分从一回路释放的热量;压力变化同时受气体总质量(主要是水蒸汽质量)与温度的控制.  相似文献   

11.
采用点火器对可燃混合气体进行预先点火是严重事故下的1种可供选择的氢气缓解措施。基于σ准则和λ准则可以评估氢气燃烧时发生火焰加速(FA)和爆燃向爆炸的转变(DDT)的可能性。本文分析密闭房间中氢气早期和晚期点火的过程。分析结果表明,点火器在空间的合理布置和初次点火时间的控制,可有效移除事故前期的氢气。本方法能用于确定核电站干式安全壳内氢气点火器的数量、位置和点火时间。  相似文献   

12.
Hydrogen safety has attracted extensive concern in severe accident analysis especially after the Fukushima accident. In this study, a similar station blackout as happened in Fukushima accident is simulated for CPR1000 nuclear power plant (NPP) model, with the computational fluid dynamic code GASFLOW. The hydrogen risk is analyzed with the assessment of efficiency of passive autocatalytic recombiner (PAR) system. The numerical results show that the CPR1000 containment may be damaged by global flame acceleration (FA) and local detonation caused by hydrogen combustion if no hydrogen mitigation system (HMS) is applied. A new condensation model is developed and validated in this study for the consideration of natural circulation flow pattern and presence of non-condensable gases. The new condensation model is more conservative in hydrogen risk evaluation than the current model in some compartments, giving earlier starting time of deflagration to detonation transition (DDT). The results also indicate that the PAR system installed in CPR1000 could prevent the occurrence of the FA and DDT. Therefore, HMS such as PAR system is suggested to be applied in NPPs to avoid the radioactive leak caused by containment failure.  相似文献   

13.
新建核电厂的设计必须做到“实际消除”早期与大量放射性释放的可能性,氢气燃爆导致的安全壳失效是必须要“实际消除”的严重事故工况之一。因此对各种消氢措施的特点进行分析研究,建立联合消氢策略评价方法,可为先进压水堆核电厂氢气控制策略选择设计评价提供支持手段。根据严重事故管理中对氢气控制策略的考虑,研究安全壳内局部位置的可燃性是相关设计评价的关键问题。根据可燃性准则、火焰加速准则、燃爆转变准则,本文使用三维CFD程序对典型严重事故工况下安全壳蒸汽发生器隔间内的可燃性及氢气风险进行模拟分析。研究结果表明,虽然喷放源项中有大量水蒸气,蒸汽发生器隔间中仍有较大区域处于可燃限值以内,合理布置的点火器能在设计中点燃并消除氢气。本研究建立的分析方法能用于对核电厂氢气控制策略选择设计的评价。  相似文献   

14.
利用计算流体力学软件(CFX),初步研究了严重事故下氢气在安伞壳空间内的流动特性,分析了不同产氢速率对安全壳内氢气分布的影响。结果表明:各种氢气释放速率情况下,氢气分布的基本趋势一致;不同的产氢速率对氢气分布的影响主要体现在氢气运动到安伞壳穹顶时所形成的涡旋小同,氢气释放速率低的序列,氢气容易滞留在穹顶,然后向下慢慢扩散,分布较均匀;氢气释放速率高的序列的氢气运动方向性强,容易向下空间运动,分布的区域集中些,分层现象明显。  相似文献   

15.
A systematic study was carried out to investigate the hydrogen behaviour in a BWR reactor building during a severe accident. BWR core contains a large amount of Zircaloy and the containment is relatively small. Because containment leakage cannot be totally excluded, hydrogen can build up in the reactor building, where the atmosphere is normal air. The objective of the work was to investigate, whether hydrogen can form flammable and detonable mixtures in the reactor building, evaluate the possibility of onset of detonation and assess the pressure loads under detonation conditions. The safety concern is, whether the hydrogen in the reactor building can detonate and whether the external detonation can jeopardize the containment integrity. The analysis indicated that the possibility of flame acceleration and deflagration-to-detonation transition (DDT) in the reactor building could not be ruled out in case of a 20 mm2 leakage from the containment. The detonation analyses indicated that maximum pressure spike of about 7 MPa was observed in the reactor building room selected for the analysis.  相似文献   

16.
It has been found that the pressure in the reactor coolant system (RCS) remains high in some severe accident sequences at the time of reactor vessel failure, with the risk of causing direct containment heating (DCH).Intentional depressurization is an effective accident management strategy to prevent DCH or to mitigate its consequences. Fission product behavior is affected by intentional depressurization, especially for inert gas and volatile fission product. Because the pressurizer power-operated relief valves (PORVs) are latched open, fission product will transport into the containment directly. This may cause larger radiological consequences in containment before reactor vessel failure. Four cases are selected, including the TMLB' base case and the opening one, two and three pressurizer PORVs. The results show that inert gas transports into containment more quickly when opening one and two PORVs,but more slowly when opening three PORVs; more volatile fission product deposit in containment and less in reactor coolant system (RCS) for intentional depressurization cases. When opening one PORV, the phenomenon of revaporization is strong in the RCS.  相似文献   

17.
During a hypothetical severe accident in a nuclear power plant (NPP), hydrogen is generated by an active reaction of the fuel-cladding and the steam in the reactor pressure vessel and released with the steam into the containment. In order to mitigate hydrogen hazards which could possibly occur in the NPP containment, a hydrogen mitigation system (HMS) is usually adopted. The design of the next generation NPP (APR1400) developed in Korea specifies that 26 passive autocatalytic recombiners and 10 igniters should be installed in the containment for a hydrogen mitigation. In this study, an analysis of the hydrogen and steam behavior during a total loss of feed water (LOFW) accident in the APR1400 containment has been conducted by using the computational fluid dynamics (CFD) code GASFLOW. During the accident, a huge amount of hot water, steam, and hydrogen is released into the in-containment refueling water storage tank (IRWST). The current design of the APR1400 includes flap-type openings at the IRWST vents which operate depending on the pressure difference between the inside and outside of the IRWST. It was found from this study that the flaps strongly affect the flow structure of the steam and hydrogen in the containment. The possibilities of a flame acceleration and a transition from deflagration to detonation (DDT) were evaluated by using the Sigma–Lambda criteria. Numerical results indicate that the DDT possibility was heavily reduced in the IRWST compartment by the effects of the flaps during the LOFW accident.  相似文献   

18.
The DISCO test facility at Forschungszentrum Karlsruhe (FZK) has been used to perform experiments to investigate direct containment heating (DCH) effects during a severe accident in European nuclear power plants, comprising the EPR, the French 1300 MWe plant P’4, the VVER-1000 and the German Konvoi plant. A high-temperature iron–alumina melt is ejected by steam into scaled models of the respective reactor cavities and the containment vessel. Both heat transfer from dispersed melt and combustion of hydrogen lead to containment pressurization. The main experimental findings are presented and critical parameters are identified.The consequences of DCH are limited in reactors with no direct pathway between the cavity and the containment dome (closed pit). The situation is more severe for reactors which do have a direct pathway between the cavity and the containment (open pit). The experiments showed that substantial fractions of corium may be dispersed into the containment in such cases, if the pressure in the reactor coolant system is elevated at the time of RPV failure. Primary system pressures of 1 or 2 MPa are sufficient to lead to full scale DCH effects. Combustion of the hydrogen produced by oxidation as well as the hydrogen initially present appears to be the crucial phenomenon for containment pressurization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号