首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究混凝土板内纵向钢筋配筋率和柱翼缘填充混凝土对平齐式端板连接钢-混凝土组合节点抗震性能的影响,对1个平齐式端板连接钢-混凝土组合梁与组合柱节点和3个平齐式端板连接钢-混凝土组合梁与钢柱节点进行了低周反复加载试验,研究了节点试件变形特征与破坏模式、弯矩-转角滞回曲线及骨架曲线等,探讨了试件承载力、承载力退化、延性及耗能能力等的影响,利用组件法对负弯矩作用下的梁端初始转动刚度进行了分析计算,并建立了考虑刚度退化的恢复力模型。研究结果表明:提高混凝土板纵向配筋率可有效提高在负弯矩作用下的梁端极限弯矩和初始转动刚度,但对正弯矩作用下的梁端极限弯矩与开裂弯矩影响不大;采用柱翼缘填充混凝土可有效提高梁端初始转动刚度和延性;提出了梁端初始转动刚度计算式,其计算结果与试验结果吻合较好。  相似文献   

2.
针对波形钢腹板组合板梁桥,为研究负弯矩区关键设计参数和极限抗弯承载能力计算方法,以某三跨波形钢腹板组合板梁桥为背景,采用ABAQUS软件建立有限元模型,探讨波形钢腹板组合板梁桥负弯矩区的受力性能,基于参数敏感性分析明确了负弯矩区钢梁设计参数的合理取值范围,揭示了波形钢腹板组合板梁桥负弯矩区抗弯特性,提出适用于波形钢腹板组合板梁桥的负弯矩区抗弯计算方法。结果表明:支点波形钢腹板厚度由抗剪及屈曲强度控制,负弯矩区受压下翼缘板宽厚比不宜大于28,波形钢腹板抗弯贡献仅约5.7%,实际工程中负弯矩区抗弯承载力计算可忽略波形钢腹板影响。  相似文献   

3.
为改善波形腹板与底板连接构造混凝土浇筑质量与耐久性能,提出翼缘钢板下移至混凝土板底面,开孔板连接件垂直焊接于波形钢板并贯穿钢筋的下包型连接构造。通过设计具有不同开孔板厚度、形状及焊接宽度等参数的连接构造试件,开展标准推出试验,研究其受剪承载力、抗剪刚度、剪切破坏模式以及相对滑移特征。在试验研究的基础上,考虑钢材理想弹塑性、混凝土塑性模型以及钢-混凝土界面非线性接触,建立适用连接构造受剪分析的精细有限元模型,分析结果与试验结果吻合较好。通过验证的有限元模型进行参数分析,结果表明,增加开孔钢板的厚度和混凝土的抗压强度可有效提高受剪承载力。最后,基于模型试验与有限元参数分析结果,提出布置开孔板连接的下包型构造受剪承载力的计算式,可对开孔钢板连接面外受剪承载力进行较为准确地预测。  相似文献   

4.
为改善波形腹板与底板连接构造混凝土浇筑质量与耐久性能,提出翼缘钢板下移至混凝土板底面,开孔板连接件垂直焊接于波形钢板并贯穿钢筋的下包型连接构造。通过设计具有不同开孔板厚度、形状及焊接宽度等参数的连接构造试件,开展标准推出试验,研究其受剪承载力、抗剪刚度、剪切破坏模式以及相对滑移特征。在试验研究的基础上,考虑钢材理想弹塑性、混凝土塑性模型以及钢-混凝土界面非线性接触,建立适用连接构造受剪分析的精细有限元模型,分析结果与试验结果吻合较好。通过验证的有限元模型进行参数分析,结果表明,增加开孔钢板的厚度和混凝土的抗压强度可有效提高受剪承载力。最后,基于模型试验与有限元参数分析结果,提出布置开孔板连接的下包型构造受剪承载力的计算式,可对开孔钢板连接面外受剪承载力进行较为准确地预测。  相似文献   

5.
梯形波纹腹板钢梁存在翼缘横向弯矩。在梯形波纹腹板钢梁弹性抗弯强度计算中,现行中国相关规程没有考虑翼缘横向弯矩的影响,其合理性值得研究。运用ANSYS有限元软件计算梯形波纹腹板钢梁翼缘弹性正应力,在正应力与弯矩分析基础上,得到翼缘横向弯矩对梯形波纹腹板钢梁弹性抗弯强度影响值。开展了对多个试件(包含中国相关规程推荐的波形试件)的计算,结果表明:翼缘横向弯矩对不同波形试件弹性抗弯强度存在不同程度的影响,若忽视翼缘横向弯矩,则计算偏于不安全。  相似文献   

6.
为研究组合效应对梁柱弱轴连接滞回性能的影响,进行了梁端截面形式分别采用标准型、削弱型、盖板加强型、扩大翼缘型及加腋型的5个纯钢中节点及5个部分抗剪连接的钢-混凝土组合中节点试件的循环荷载试验。对各试件的试验现象、破坏特征、滞回曲线、钢梁应力(应变)分布及耗能进行了分析。结果表明,除了加腋型试件,钢-混凝土组合节点试件梁下翼缘焊缝均发生不同程度的开裂,但梁上翼缘焊缝及腹板螺栓仍可继续承担较大荷载,而纯钢节点试件梁上下翼缘焊缝均出现开裂,承载力迅速降低;纯钢节点的滞回曲线较组合节点的更为饱满,钢-混凝土组合节点试件的滞回曲线受到腹板螺栓滑移的影响而逐渐呈反S形;正弯矩作用下钢-混凝土组合梁截面中和轴显著上移,梁下翼缘应变水平基本高于纯钢节点的;梁端削弱型节点能较有效地实现塑性铰外移,且其滞回曲线最为稳定,推荐优先选用;焊接质量是影响节点滞回性能的关键,建议蒙皮板采用抗层间撕裂的Z向钢材。  相似文献   

7.
在波形钢腹板组合箱梁中,剪力主要由波形钢腹板承担。由于波形钢腹板的抗剪刚度比混凝土腹板有较大程度的降低,波形钢腹板会产生较大的竖向剪切变形。为此,基于能量变分法建立了考虑腹板剪切变形的波形钢腹板组合箱梁剪力滞效应分析方法。通过试验对该理论分析方法进行验证,并基于该理论分析方法研究波形钢腹板剪切变形对剪力滞效应的影响。同时,基于该分析方法提出了采用影响线最不利加载方式进行相关规范中规定的汽车荷载作用下的波形钢腹板组合箱梁桥剪力滞效应分析。结果表明:考虑腹板剪切变形的分析方法与试验结果吻合度良好;波形钢腹板的剪切变形有利于减轻三跨连续梁正弯矩区的剪力滞效应,即考虑腹板剪切变形后翼缘有效宽度系数值更接近于1。  相似文献   

8.
H形钢-木组合梁受弯性能试验研究   总被引:1,自引:0,他引:1  
提出一种以焊接H形钢梁为骨架,钢梁翼缘外表面黏结木板组成工字形截面的钢-木组合梁。以组合梁中的木板厚度、钢梁翼缘厚度及宽度、腹板高度为参数,对9根钢-木组合梁进行弯曲性能试验,观察在各级荷载作用下钢板和木板的应变变化、组合梁挠度的发展、破坏过程及破坏形态,探讨其受弯承载力和抗弯刚度等弯曲性能。结果表明,H形钢和木板整体工作性能好,组合效应显著,构件跨中横截面应变呈线性分布。试件荷载-跨中挠度曲线呈弹性和弹塑性两个阶段,最终以下翼缘木材跨中断裂而破坏。随着木板厚度、钢梁翼缘厚度及宽度、腹板高度的增大,试件的承载力呈现不同程度的提高。提出了计算钢-木组合梁跨中挠度及受弯承载力的简化计算式,将其计算结果与试验结果进行对比,结果表明计算式精度较高,可以为钢-木组合梁的应用提供设计依据。  相似文献   

9.
为研究波纹腹板H型钢梁的受弯性能,首先对其进行理论分析,得出波纹腹板H型钢梁的承载力完全由上、下翼缘提供,腹板不承担弯曲正应力,并提出受弯承载力的理论计算式。设计完成2个试件的受弯承载力试验,得到了试件的荷载-位移曲线、极限荷载和破坏形态等。试验结果证明了所提出理论分析模型的正确性,并验证了所提出的承载力计算式是安全合理的。为了进一步验证理论分析模型,同时支持参数分析,采用有限元方法对波纹腹板H型钢梁的受弯性能进行数值模拟。有限元方法和试验得到极限弯矩等结果较为接近,试验梁的破坏弯矩超过理论塑性弯矩20%以上。通过参数分析可知:稠密腹板波形及较小的翼缘宽厚比能够提高极限弯矩;腹板高厚比对极限弯矩无显著影响。  相似文献   

10.
波形钢腹板不能抵抗轴向力作用,波形钢腹板PC组合箱梁的剪力滞效应与PC箱梁不同。依托一箱九室波形钢腹板PC组合连续箱梁桥,建立了有限元模型,分析了荷载作用下混凝土顶底板的剪力滞效应。结果表明,波形钢腹板PC组合箱梁顶、底板均具有正剪力滞效应,顶板剪力滞更为明显;在支点具有横隔梁构造的情况下,箱梁跨中截面剪力滞较大,在设计时需要给予注意。  相似文献   

11.
伴随着桥梁跨度的增加,减轻桥梁自重变得越来越重要。波形钢腹板预应力混凝土组合箱梁桥作为一种新型钢混组合结构,它充分利用混凝土和波形钢腹板的材料优点,有效降低了自重,提高了桥梁的跨越能力。文章以某三跨连续波形钢腹板预应力混凝土箱梁桥为工程背景,对波形钢腹板和预应力体系的构造特征进行了介绍,并且借助桥梁工程软件迈达斯对其进行建模,对该类桥梁的力学特性计算分析。主梁中混凝土顶板和底板主要承担弯矩,而波形腹板主要承受剪力。通过建立模型来模拟卫河大桥成桥后的受力状态,并进行了顶底板正应力验算,钢腹板剪切屈曲验算以及竖向挠度验算。  相似文献   

12.
为了研究负弯矩作用下腹板开洞钢-混凝土组合梁的极限承载力及相关受力性能,对4根组合梁试件进行了试验研究和有限元分析。结果表明,负弯矩作用下的组合梁腹板开洞后,其刚度和承载力明显降低,洞口区域应变不再符合平截面假定;通过增加混凝土板厚度可以提高其承载力;混凝土翼板对负弯矩区腹板开洞组合梁的抗剪承载力有很大的贡献;洞口形状对其受力性能有较大的影响。  相似文献   

13.
《工业建筑》2016,(5):160-165
通过建立三跨连续的单箱双室波形钢腹板箱梁桥模型,采用精细化的ANSYS空间网格划分,研究箱梁宽跨比、翼缘宽跨比、横隔板位置、波纹形状、波形钢板厚、波形钢板高度等参数对多室波形钢腹板箱梁应力增大系数和位移增大系数的影响,探究其对偏载系数的敏感度,并与理论分析方法进行对比。结果表明:应力增大系数与位移增大系数的变化规律有差异,中跨的偏载系数值要略大于边跨,宽跨比、横隔板位置、腹板厚度与应力增大系数呈正相关,翼缘宽跨比、横隔板位置、腹板高度与位移增大系数呈正相关,偏载系数对波形钢腹板相关参数的敏感度较低。  相似文献   

14.
通过钢梁与混凝土柱节点中梁贯穿节点与柱贯穿节点两组节点共6个试件低周反复荷载试验对比,分析了不同节点连接方式下节点开裂、极限荷载、位移、刚度、耗能能力等性能。结果表明,梁贯穿节点破坏主要发生在钢梁根部翼缘及腹板,而柱贯穿节点的破坏主要发生在钢梁与锚板间的焊缝处,由于核芯区有腹板和翼缘穿过,梁贯穿节点在受力性能方面优于柱贯穿节点。梁贯穿节点的抗震能力略大于普通混凝土节点,柱贯穿节点与普通混凝土节点抗震能力对比有待于进一步研究。  相似文献   

15.
研究波纹腹板H形钢梁开孔后经钢套筒补强后的受弯性能。设计完成了两个试件的受弯承载力试验,得到了试件的荷载-位移曲线、极限荷载和破坏形态等。采用ABAQUS有限元软件对其进行数值模拟,并对其受弯承载力进行了理论分析,提出了受弯承载力的计算式。研究表明,波纹腹板H形钢梁开孔后经过补强仍具有较好的抗弯变形能力,并且具有较好的塑性性能;开孔后经过补强的波纹腹板梁在弯矩作用下腹板上几乎不存在弯曲正应力,认为截面弯矩完全由上、下翼缘承担;其抗弯承载力可采用理论公式进行设计。  相似文献   

16.
为研究钢梁-圆钢管混凝土柱穿心连接的抗震性能,进行了3个大尺寸钢梁根部翼缘不处理的标准型、翼缘削弱型及翼缘扩大型节点试件的拟静力试验。试验结果表明:试件的破坏形态为钢梁根部坡口焊缝与钢管之间开裂,钢梁端部翼缘局部屈曲;钢梁悬臂端的极限位移角达0.04左右;钢梁固端弯矩-悬臂端转角滞回曲线饱满;翼缘削弱型试件的极限承载力为标准型试件的78%。建议在抗震设计的建筑工程中,钢梁-圆钢管混凝土柱可采用梁端部翼缘不处理的标准型穿心连接。  相似文献   

17.
由波形钢腹板组合梁和钢筋混凝土桥墩所构成的组合刚构桥,可以综合组合结构与刚构桥的优势,具有跨越能力强、长期性能好和施工方便等优势,是适用于高烈度地震区大跨桥梁的一种新型结构形式。本文对波形钢腹板组合梁刚构桥墩梁结合部以及墩顶位置组合梁负弯矩区的受力性能进行了试验研究。试验表明,此类墩-梁固结节点具有良好的承载力、刚度、耗能能力、延性以及变形恢复能力,抗震性能良好;波形钢腹板组合梁负弯矩区开裂荷载较高,裂缝分布较均匀,抗剪连接件性能可靠,正应力横向分布均匀。同时,还分析了腹板内衬混凝土对截面正应变分布的影响以及波形钢腹板在不同荷载水平下对组合梁抗剪强度的贡献,并建议了波形钢腹板在节点区混凝土内的锚固深度。  相似文献   

18.
为研究楼板的组合作用对复式钢管混凝土柱-钢梁节点抗震性能的影响,进行了4个考虑楼板组合作用的节点和1个不考虑楼板组合作用的钢梁节点的低周往复荷载试验,分析了不同构造和混凝土楼板对节点破坏形态、滞回曲线、承载能力、刚度退化、延性和耗能能力等的影响。结果表明:该类节点构造合理,满足"强节点弱构件"的抗震设计原则;不考虑楼板组合作用的节点试件的破坏形态为梁端破坏,考虑楼板组合作用的节点试件的破坏形态为梁端破坏和柱端破坏;楼板与钢梁的组合作用使节点承载力提高显著,但延性提高不明显,破坏时钢梁下翼缘的变形和焊缝撕裂程度增大;锚固腹板设置加劲肋有效延缓了钢梁下翼缘破坏,提高了组合节点的耗能能力;该组合节点试件滞回曲线较饱满,刚度退化明显,承载力退化不明显,等效黏滞阻尼系数介于0.282~0.311之间,转角延性系数和层间位移角均满足规范要求,具有较好的抗震性能。  相似文献   

19.
基于现有试验数据以及组合节点抗弯承载力的研究成果,利用塑性分析方法和组件法,提出一种平端板连接组合节点承受负弯矩作用时,其塑性抗弯承载力的计算方法。探讨组合节点的实效模式,给出其各组件承载力的计算方法,组件包括钢筋、螺栓、柱腹板、梁翼缘、混凝土楼板等。考虑中和轴出现的6种位置:混凝土楼板内;钢梁上翼缘内;钢梁腹板内,所有螺栓受压;前m-1排螺栓受拉,第m排部分受拉,其余受压;1~m排完全受拉;只有钢梁下翼缘受压。该方法可以考虑节点承受非对称荷载作用的情况以及作用在连接上的剪力、高强度螺栓撬力等因素的影响。如果将组合连接的配筋率取为零,不考虑组合楼板的影响,使用该方法同样可以计算平端板连接梁柱纯钢节点在承受负弯矩作用时的抗弯承载力。  相似文献   

20.
对6根外包钢板-混凝土组合连梁试件进行了拟静力加载试验,试件变化参数有连梁跨高比、钢板厚度和弯剪比。连梁钢板的破坏包括连梁端部钢板的开裂和钢板的局部屈曲。试件承载力的下降主要由梁端钢板的开裂和裂口扩展引起。所有试件的连梁钢板开裂后,裂口迅速扩展,在钢板开裂或开裂后的下一级位移循环时荷载达到峰值。连梁钢板的局部屈曲分为连梁端部钢板的受压局部屈曲和钢腹板的剪切局部屈曲。局部屈曲的发生和形态主要受钢板厚度、连梁的跨高比和钢板开裂的影响。所有试件的内填混凝土均未发生明显的受压破坏。混凝土的开裂程度与裂缝分布与外部钢板的变形程度相一致。采用连梁钢腹板无对接焊缝构造试件的变形能力明显优于连梁钢腹板有对接焊缝构造试件的变形能力。所有试件的滞回曲线饱满,具有稳定的耗能能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号