首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
煤层气矿井瓦斯或矿井气的生产通常需要脱水,从而减小气井储集层压力,使吸附在煤表面的甲烷释放.甲烷解吸时形成气泡,达到饱合时气泡形成一条连续的通路,并向井筒流动.随着脱水继续进行,煤的相对渗透率出现变化,气体相的渗透能力增加,水相的减小.储集层受到的影响范围也增大.了解气井的产气机理和煤层水文特征对评价气井的生产潜力和经济开发可行性有重要价值,它可以帮助进行产气井的设计,水力压裂处理和井场排水产气.  相似文献   

2.
 为了研究煤层瓦斯抽采过程中的煤体渗透性变化规律,基于Kozeny-Carman方程,利用表面物理化学与含瓦斯煤的有效应力理论,建立考虑有效应力变化、瓦斯解吸和煤基质收缩效应的煤层渗透率动态变化模型,并结合数值模拟分析煤层瓦斯抽采过程中煤体透气性动态演化规律。研究结果表明:(1) 所建立的煤层渗透率动态演化模型能较好地描述煤层瓦斯抽采过程中的煤体透气性动态演化规律。(2) 煤体渗透率与煤体孔隙压力之间呈现出“V”字型变化趋势,低瓦斯压力阶段煤基质收缩效应占主导地位,煤层渗透率随瓦斯压力降低而增大;高瓦斯压力阶段有效应力作用占主导地位,煤层渗透率随瓦斯压力降低而减小。(3) 从煤层内部逐渐接近抽采钻孔过程中,煤层瓦斯压力较高时,煤体渗透率先减小后增加;煤层瓦斯压力较低时,煤体渗透率不断增大。研究结果可以为我国煤矿瓦斯治理和煤层瓦斯抽采提供理论支撑,具有指导性意义。  相似文献   

3.
含瓦斯突出煤三轴压缩下力学性质试验研究   总被引:3,自引:2,他引:1  
以典型煤与瓦斯突出矿井松藻煤电集团打通一矿7#突出煤层制备的型煤试件为研究对象,利用岛津AG-250伺服材料试验机和自行研制的三轴渗透仪,对不同外界应力条件下含瓦斯突出煤的力学特性进行试验研究.结果表明:瓦斯压力固定的情况下,围压对含瓦斯煤的力学特性起到强化和改善的作用.随着围压的增加,突出煤样的三轴抗压强度、弹性模量和峰值应变均呈线性单调增加;围压大小一定情况下,瓦斯压力对含瓦斯煤的力学特性起到弱化的作用.随着瓦斯压力的增加,突出煤样的三轴抗压强度和弹性模量分别呈线性和对函数形式单调递减,而峰值应变则呈线性单调增加;有效应力对含瓦斯突出煤的力学性质具有强化和改善的作用,随着有效应力的增加,含瓦斯突出煤的弹性模量、三轴抗压强度和峰值应变均单调增加.研究成果对采动影响下煤层瓦斯抽放和煤与瓦斯突出防治及预测具有重要意义.  相似文献   

4.
立足于消除煤层渗透及扩散特性对于煤与瓦斯气固耦合模型的干扰,在分析首采煤层所处应力状态特点的基础上,建立更符合煤体的孔隙裂隙二重介质特性的修正的P-M渗透率模型,提出考虑解吸–扩散效应及Klinkenberg效应的煤与瓦斯气固耦合模型,详细阐述多物理场之间的耦合作用关系。应用该模型模拟分析深部首采层顺层钻孔预抽消突过程中煤层瓦斯压力及渗透率的演化规律。模拟结果表明,Klinkenberg效应对低渗透煤层瓦斯运移的促进作用显著,并随着瓦斯压力减小促进效果增大;煤体绝对渗透率的动态变化是骨架压缩效应及基质收缩效应的竞争结果,瓦斯压力开始减小时,骨架压缩效应首先起主导作用,渗透率减小,瓦斯压力持续降低时,基质收缩效应逐渐取代其成为主导作用,渗透率增大。  相似文献   

5.
不同性质煤的微观特性及渗透特性对比试验研究   总被引:2,自引:1,他引:1  
 对从典型矿井取得的不同性质煤,分别进行微观特性和瓦斯渗透特性试验。结果表明:突出煤的比表面积和吸附/解吸能力明显高于延期突出煤和非突出煤,延期突出煤介于二者之间。突出煤吸附能力强,解吸速度相对也较快,可能形成较高的气体压力,对煤岩的破坏性增强。非突出煤的渗透率明显高于突出煤和延期突出煤的渗透率,相差最大处超过4倍以上,煤的渗透特性好,瓦斯就较易在煤层中运移,煤层的储气条件差,瓦斯更容易从煤层中脱离出来,反之则会增加突出危险性。说明渗透特性是考察煤层是否具有突出危险性的一个重要指标。总之,煤的渗透特性和微观特性是密切相关的,吸附/解吸特性能力强,煤的渗透特性相对较差,强度较低,较易发生破坏,突出危险性较大。  相似文献   

6.
 考虑瓦斯在煤层中的解吸、放散与渗流,利用达西定律分别描述煤基质与裂隙内的瓦斯运移,以煤基质与裂隙之间的传质通量为桥梁,发展煤体双重孔隙瓦斯双渗流模型,推导无因次模型,并运用有限差分法进行编程解算。结果表明:瓦斯压力、含量在裂隙内的下降速度要远大于煤基质;基质空间内瓦斯压力及含量的分布具有非均匀性及非稳态性;增大裂隙渗透性或煤层瓦斯压力,或减小煤壁表面瓦斯压力,均能导致瓦斯涌出速度的增大;煤体游离瓦斯含量对瓦斯涌出速度影响较小。结合潘一矿煤层瓦斯参数,对比模拟结果和实测数据,验证了煤体双重孔隙瓦斯双渗流模型的正确性。  相似文献   

7.
《Planning》2015,(29)
针对青东煤矿在施工瓦斯压力测定钻孔的过程中受煤系底层砂岩裂隙水影响,导致测得的压力多半含水,无法测得煤层的真实瓦斯压力。为了掌握矿井各煤层瓦斯赋存的准确资料,测准瓦斯基本参数,以该矿824里风巷底抽巷瓦斯压力测定钻孔施工为工程背景,分析了影响瓦斯压力测定效果的难点及原因,在严格按照测压流程施工瓦斯压力测定钻孔的基础上,通过在测压孔四周施工4个辅助瓦斯压力测定钻孔,并进行注浆。通过辅助孔注浆对瓦斯测定钻孔周围岩石裂隙进行封堵,有效的解决了煤层砂岩水对瓦斯压力测定效果的影响,从而达到测压堵水效果。  相似文献   

8.
含瓦斯煤层力学特性的实验研究   总被引:13,自引:4,他引:13  
本文通过对山西沁水永红煤矿无烟煤合高瓦斯的渗透、变形和强度试验,得出了轴压、侧压、瓦斯压对含瓦斯煤层特性的影响规律。文章指出:含瓦斯煤的透气性随轴压和侧压的增大而按指数规律衰减;在临界瓦斯压力条件下,煤体的透气性最差;瓦斯的存在降低了煤的强度,增强了煤的塑性软化特性,使煤更易于变形失稳破坏。  相似文献   

9.
“三软”煤层冲击地压诱导煤与瓦斯突出力学机制研究   总被引:1,自引:0,他引:1  
 以新安煤田为工程背景,通过现场调查、测试、实验室试验、理论计算和相似条件类比,探讨“三软”煤层冲击地压作用下煤与瓦斯突出力学机制。研究结果表明,在原岩和采动应力作用下,巷道底板存在的高弹性模量夹层砂岩向上挠曲,造成煤体正常瓦斯溢出通道被封闭,煤体内部产生裂隙促使吸附瓦斯解吸为游离瓦斯,可实现煤与瓦斯突出的外部准备条件;底板高弹模夹层的破断冲击,打通被压实煤体的瓦斯溢出通道,可实现煤与瓦斯突出的外部激发条件;掘进迎头附近底板产生的105J以上量级冲击地压,其孕育和发生过程导致的迎头煤墙闭合–破裂,可诱导每立方米煤初始瓦斯膨胀能小于1.3×106 J (瓦斯压力小于0.74MPa)的煤层发生瓦斯突出或异常涌出,而每立方米煤初始瓦斯膨胀能大于1.3×106 J(瓦斯压力大于0.74MPa)的煤层,可诱导发生煤与瓦斯突出。通过对高弹性模量岩层(夹层)底板实施钻孔或爆破措施,防止底板弹性变形向上挠曲与破断冲击,可破坏此类煤与瓦斯突出准备和激发的外部条件。  相似文献   

10.
块煤含水率对其吸附性影响的试验研究   总被引:3,自引:0,他引:3  
 为研究地下水对煤吸附性影响,针对潞安屯留煤矿3#煤层,进行大块煤样在干燥及含水状态下的吸附特性研究,试验发现:(1) 采用定容吸附时,瓦斯压力随时间衰减具有对数关系,衰减系数随含水率增大而降低;(2) 瓦斯吸附量与吸附时间之间为幂指关系;(3) 煤的瓦斯吸附量与含水率之间具有线性关系,二者之间关系与粉煤的研究结果不同。  相似文献   

11.
含吸附煤层气煤的有效应力分析   总被引:24,自引:7,他引:24  
煤层中的气体(煤层气)主要呈吸附状态,固体煤和吸附气体之间的相互作用关系是目前人们关心的问题,它与煤矿瓦斯防治和煤层气开采有关。根据表面物理化学和弹性力学原理,推导了煤吸附膨胀变形、吸附膨胀应力及有效应力计算公式,理论计算结果和试验结果基本一致。分析表明,裂隙中自由气体的压力对煤层中的应力状态影响很小,在煤层内部吸附膨胀应力和吸附膨胀变形规律服从虎克定律。  相似文献   

12.
为进一步认识煤与瓦斯突出动力现象及其能量释放机制,利用多场耦合煤矿动力灾害大型模拟试验系统开展不同三维地应力条件下的煤与瓦斯突出物理模拟试验,研究突出过程中煤体内瓦斯压力的时空演化过程及其对不同地应力条件的响应规律。结果表明:突出启动后,卸压区的瓦斯压力在下降过程中出现了不同程度的周期性回升现象,卸压区最小主应力方向上瓦斯压力的下降速率随着距煤体断面中心距离的增加而减小,而在最大主应力方向上瓦斯压力的下降呈现出"同增同减"的下降趋势;应力集中区的瓦斯压力下降速率在最小主应力方向上呈现出与卸压区相同的规律,在最大主应力方向上,瓦斯压力下降起始时刻随着地应力的增加而提前,这意味着地应力越大突出扩展至煤层深部的时间越短;瓦斯压力在突出启动初期呈现出半椭圆形压降区,突出过程中煤层内的瓦斯压力下降区向煤层内的扩展是一个减速过程,但随着地应力的增大,瓦斯压降区向煤层深部的推进速率会增大。  相似文献   

13.
 煤层的瓦斯扩散系数、浓度流动系数、初始运移强度系数和衰减系数,是煤体孔隙结构和煤质特性的力学表征。为研究煤层瓦斯运移机制,量化煤层瓦斯运移能力,依据Fick扩散理论和质量守恒方程,建立了描述煤体瓦斯浓度与扩散速率的计算模型,采用变量分离法进行数学求解,并通过数据迭代方法获取煤体内瓦斯的扩散系数和表面浓度流动系数;通过室内4种煤样瓦斯运移实验数据比较发现,煤体瓦斯质量增量与运移时间成负指数关系,且随煤阶升高而增大;瓦斯运移速度和衰减系数取决于煤的吸附能力和煤质组分,且煤种之间差异明显;渗透率与扩散系数成线性关系,与流动系数成二次函数关系,且随煤阶升高整体呈增加趋势。  相似文献   

14.
利用自主研发的含瓦斯煤热流固耦合三轴伺服渗流装置,以无烟煤型煤试件为研究对象,进行不同轴压、围压条件下气体压力加卸载过程中渗流试验研究,模拟不同煤层深度,以探讨煤变形及瓦斯运移演化规律.研究结果表明:(1)在加载过程中,煤应变量减小,吸附瓦斯产生较大的膨胀变形,呈现线性关系,在卸载过程中,煤应变呈增大趋势,煤逐渐被压缩.随轴压、围压增大,下降单位气体压力引起的煤应变升高量降低,应变响应程度减小.(2)在加载过程中,随气体压力升高,渗透率先减小后增大趋势,煤渗透率呈类似“V”型变化趋势,气体压力在1.2 MPa左右存在明显的拐点,体现煤孔隙扩张的程度和吸附瓦斯层增厚程度影响,依赖于吸附作用或有效应力占主导地位.在卸载过程中,随着气体压力降低,煤渗透率呈先减小后增大趋势,渗透率增大且变化速度加快,主要依赖有效应力作用或基质收缩的主导地位差异.(3)随有效应力的增大,煤渗透率呈先减小后增大的趋势.煤渗透率随有效应力增大呈对数函数或指数函数关系.(4)气体压力具有典型二阶段特征,同时渗透率与体积应变具有密切关系,体现出有效应力、吸附膨胀与煤基质收缩同时对裂隙等内部结构的影响.  相似文献   

15.
瓦斯对煤的力学性质及力学响应影响的试验研究   总被引:35,自引:0,他引:35       下载免费PDF全文
本文通过不同围压、不同孔隙瓦斯压力下煤的三轴压缩试验结果,阐述了瓦斯对媒体的力学变形性质及力学响应的影响。试验结果证明了含瓦斯煤的变形、破坏及力学响应同时受到游离和吸附两种状态瓦斯的影响。一是瓦斯压力作为体积力的力学作用,另一为瓦斯的吸附和解析对煤体产生的非力学作用。因此在研究煤和瓦斯突出的发生机理及采动影响下煤层中瓦斯流动问题时必须考虑瓦斯的力学和非力学作用对煤的力学性质和本构关系的影响。  相似文献   

16.
以贵州山区某过煤层瓦斯隧道为例,根据影响隧道瓦斯突出的关键地质因素,选取瓦斯压力、瓦斯含量、瓦斯放散初速度、煤的坚固性系数、煤体结构类型等参数作为隧道瓦斯突出评价的关键指标,采用属性数学理论建立隧道瓦斯突出危险性预测模型,对隧道瓦斯突出危险性进行了评价。在模型构建过程中,首先依据隧道瓦斯突出危险性分级标准,构建各评价指标的属性测度函数,进而结合隧道施工现场实测的相关指标参数,计算各煤层的单指标属性测度及综合属性测度,建立起评价指标测度与属性之间的关系,最后利用置信度对多因素影响下瓦斯隧道的综合属性进行判识,进而实现对隧道瓦斯突出危险性的评价。评价结果显示:过煤层隧道穿越M5、M9煤层时,隧道具有强突出危险性,穿越M4煤层时隧道突出危险性相对较小,隧道施工过程中应加强M5、M9煤层的消突和防突措施,以防灾害事故的发生;评价结果与工程现场显示的瓦斯动力现象相一致,具有较高可信度。  相似文献   

17.
我国很多煤矿经过几十年的开采,开采水平逐渐向深部延深,随着矿井开采深度的增加,煤层瓦斯压力和瓦斯含量也在逐年加大,一些矿井由低瓦斯矿井逐渐转变为高瓦斯矿井或是煤与瓦斯突出矿井,我国已成为世界上煤与瓦斯突出灾害最严重的国家。鉴于此,本文对煤与瓦斯突出矿井开采中相关问题进行了探讨。  相似文献   

18.
复杂应力路径下含瓦斯煤渗透性变化规律研究   总被引:3,自引:1,他引:2  
 通过含瓦斯煤渗透特性试验研究,系统分析复杂应力路径下含瓦斯煤渗透性的变化规律,建立含瓦斯煤渗透率与轴向压力、围压、瓦斯压力、围压升降、全应力–应变过程等之间的定性与定量关系,深入探讨各种不同应力路径下含瓦斯煤渗透性的控制机制和变化规律。结果表明,应力路径对含瓦斯煤的渗透率有重要影响:(1) 含瓦斯煤渗透率随着轴向压力和围压的增大而减小,随瓦斯压力的增大而增大。(2) 含瓦斯煤渗透率与轴向压力、围压和瓦斯压力均呈指数关系变化。(3) 围压升、降过程中,含瓦斯煤渗透率会受到一定程度的损害,其损害程度可以用最大渗透率损害率和渗透率损害率来表征。同时,三维压缩条件下含瓦斯煤会发生二次密实效应。(4) 三轴压缩下全应力–应变试验过程中,含瓦斯煤的渗透率呈“V”字型变化趋势;渗透率随煤样的应变先减小后增大,然后达到最大值,并且渗透率的增幅小于其减幅。  相似文献   

19.
利用红外热成像手段,对不同压力下煤吸附解吸甲烷过程中瓦斯包演化过程进行了观察,并评估其吸附特征与在煤中的分布规律。研究表明:煤中存在不同尺度与甲烷吸附能力的瓦斯包,吸附/解吸甲烷时,煤中瓦斯包比邻近区域具有更明显的升温/降温现象;吸附压力越大,煤样吸附平衡时间越短。通过图像处理的方法对不同吸附压力条件下的红外热像图中的瓦斯包区域进行提取,可有效计算其甲烷吸附特征。计算表明,随着吸附压力升高,煤体瓦斯包中甲烷集中程度降低。在微米尺度下,煤中瓦斯包分布具有分形特征,且分形维数均在1.95~2.00之间。随着吸附压力升高,瓦斯包中甲烷集中程度降低,不同尺度的瓦斯包均发生了连通演化。  相似文献   

20.
发耳隧道位于贵州省水城县发耳乡境内,隧道进口位于发耳乡营昌村,出口位于新联村,是水盘高速公路的关键控制性工程,瓦斯浓度和穿越煤层数在国内已建公路瓦斯隧道中极为罕见属高瓦斯隧道.该隧道是一座上下行分离式四车道高速公路长隧道,隧道左线长2064m,右线长2099m,隧道最大埋深206.10m.隧道共穿越14层煤,煤层最厚4.80m,已揭煤层最大瓦斯含量为12.95m3/t,超过突出临界值临界值8m3/t,瓦斯压力大部分在1.5~3.12MPa之间,远超出瓦斯突出临界值0.74MPa:同时该隧道整个洞身穿越煤系地层、所处地理位置又为煤与瓦斯突出矿区,在整个隧道建设过程中受到了施工各方的特别关注与重视.从这一角度上来说,发耳隧道工程施工作业普通隧道施工工程作业最显著的差异在于其在施工过程当中必须兼顾煤与瓦斯突出问题的处理.基于此,本文从发耳隧道工程基本情况分析、区域“四位一体”综合防突措施分析以及局部“四位一体”综合防突措施分析这三个方面入手,围绕发耳隧道防治煤与瓦斯突出的施工技术这一中心问题展开了较为详细的分析与阐述,并据此论证了以上施工技术在防治煤与瓦斯突出问题中的有效性,在确保整个发耳隧道工程建设项目安全运行过程中的重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号