首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the impact of the 1999 Chi-Chi earthquake (ML = 7.3) and the following typhoon induced heavy rainfalls and floods, the tailrace tunnel of the Kukuan Hydropower Plant was severely blocked and must be realigned and rebuilt. The new tailrace tunnel is 1991 m long with a 140 m section passing underneath the Tachia River, where the shallowest rock cover is 3.5 m. In view of the common phenomenon that weak zone developed along river channel and debris accumulated on river bed, the ground improvement from the surface to the tunnel is difficult. Therefore, a construction shaft, a water sealing pre-grouting plan and a special supporting system were designed to prevent the potential water inflow when tunneling underneath the Tachia River. In the construction phase, adequate excavation cross sections, support elements, auxiliary treatments, and water sealing grouting methods were selected to overcome the difficult ground condition encountered. The experience learned from this successful case can be a valuable reference for the design and construction of similar river crossing tunnels in the future.  相似文献   

2.
Although face bolting has been used as a stabilisation technique in open-face tunnelling for decades, there is still a lack of systematic ways for determining the optimum parameters of face bolts. To optimise design for face bolting in soft ground, it is necessary to understand the influences of each parameter associated with face bolting on ground response. In this note, five series of numerical parametric studies are carried out, to investigate the effects of length, density, reinforcement area, axial rigidity of face bolts and strength of soil on tunnel face stability and deformation in soft rock. Based on the ground condition, geometries of tunnel and configurations of face bolts simulated, the optimum length, density and axial rigidity of face bolts are found to be 0.6H (H = height of tunnel), 1 bolt/m2 and 195 MN, respectively. The optimum axial rigidity of face bolt appears to be independent of the bolt density. The computed results also reveal that it is more effective to reduce face deformation by installing face bolts around the tunnel periphery, than installing them near the central area of the tunnel face.  相似文献   

3.
With the planned length of 36 km, Ghomroud tunnel is one of the longest tunnels under construction in central Iran. About half or 18 km of this tunnel was excavated by a double shield TBM. Several adverse geological conditions encountered, consisting of ground squeezing and face collapse, hindering TBM performance, and caused several TBM stoppages and jamming. This paper presents the impact of ground conditions on machine performance based on the information obtained from field observations and geotechnical site investigations. As built geological conditions are described while the method and results of tunnel convergence measurements and their impacts on tunneling operation is examined. Based on the detail study of the available geological information and tunnel convergence measurements, it was evident that the existence of weak structures in rock mass resulted in high rate of the convergence, which was the dominant factor in the TBM jamming. Since it was not possible to make observation and measurements of geological parameters when working in a lined tunnel built by a shielded machine, an attempt was made to correlate TBM operational parameters and ground convergence. The preliminary result of the analysis has indicated a good correlation among machine’s operational parameters and tunnel convergence. If the system is fully developed, these parameters can be used as an indicator of the potential for high rates of convergence. An early warning on ground convergence is essential for taking precautionary measures to avoid TBM from getting jammed by squeezing ground.  相似文献   

4.
As part of the City of Edmonton’s light rail transit expansion, twin 6.5 m diameter oval shaped tunnels were constructed using conventional tunnelling methods. The geology of the site consists predominately of a hard, fissured cohesive till unit. The tunnel face construction was sequenced as top header, bench and invert excavations. At its narrowest, the pillar separating the twin tunnels was less than 1.5 m across or 0.23 tunnel diameters. Typically, the minimum pillar spacing required to reduce the interaction between twin, side by side tunnels is one tunnel diameter. Because the tunnel construction was within an urban environment, there was considerable concern with ground loss and excessive surface settlements. This study demonstrates that within similar materials, a pillar width of 0.5 tunnel diameters sufficiently reduces the tunnel interactions and minimize the risk of damage to nearby structures.  相似文献   

5.
During the excavation process of underground caverns, the rational selection of the ventilation scheme is very important for the safety and health of construction workers. The flood discharge tunnel groups at the Changheba Hydropower Station are selected as a case to study the design of ventilation schemes in inclined tunnel groups; these groups are characterized by a gradient of approximately 10% and a complex intersecting relationship among the tunnels. The Computational Fluid Dynamics (CFD) method is used to simulate the fluid dynamics in tunnel groups when different ventilation schemes are employed. Four ventilation schemes with the same duct at different positions along the transverse section are formulated, and the scheme approaching the right side with most of the construction adits is adopted in engineering after a comparative analysis, as it offers a well-distributed velocity field and sufficient security distance. The study reveals that flow vortices appear in the tunnels with a long axis length ranging from 5 m to 20 m; the observation that the flow velocity on the transverse sections is away from the heading face indicates that a low-velocity area is always present in the vicinity of an air duct, and the security distance on the upstream side is 60% shorter than on the downstream side with the same air-blower when the tunnels have a 10% gradient. In addition, when the excavation distance rises 200 m, the ventilation condition in the tunnels, especially in the areas around tunnel intersections, is greatly improved by the completion of pilot tunnels and shafts in advance.  相似文献   

6.
The effects of tunnel blast excavation on the surrounding rock mass and the lining systems of adjacent existing tunnels are comprehensively studied for the Damaoshan highway tunnel project as a case study. The damage of the surrounding rock and the lining system under different blast loads are analyzed by field tests and numerical simulations. It is observed that the rock damage extent around the tunnels linearly increases with the peak particle velocity (PPV) of the existing tunnel. A feasible PPV-based damage control method is then proposed for different portions of the tunnels. For the Damaoshan tunnel project, a PPV threshold of 0.22 m/s in the adjacent existing tunnel is prescribed to limit the damage extent to approximately 1.6 m at the tunnel exit and entrance portions. Furthermore, the PPV criteria for the other portions are also determined accordingly. It is also shown that no failure occurs in the linings or at the rock–lining interfaces if the PPV is less than 0.30 m/s. The control method and the threshold PPV proposed in this study have been successfully applied to restrict blast-induced damage during the new tunnel excavation of the Damaoshan tunnel project.  相似文献   

7.
This paper investigates the effect of forepoles on stability of tunnel face and unsupported length during tunnel excavation in clay beds. Forepoles were modelled using 1 mm diameter brass rods. The tests were conducted using 65 mm diameter model tunnels with a flexible face at 100g centrifuge environment. The unsupported length of the tunnel varied between 1 and 1.5 times the tunnel diameter in different tests. The results seem to suggest that forepoles influence to reduce the length of settlement trough ahead of the tunnel face. However, width of the settlement trough remained unaffected. Excess negative pore pressures after collapse were noted to decrease with distance ahead of the tunnel face and increase with depth from the surface up to the tunnel axis. However, scatter in the measured data points suggest that the tunnel stability depends not only on the unsupported length of the tunnel but also on the length of forepoles. It is difficult to include these effects in the simple plasticity solution framework wherein the soil structure interaction is ignored.  相似文献   

8.
With a cover of 5-30 m, a 260 m2 cross-sectional area, and a 4-m wide pillar, the Cassia twin road tunnels underpass Cassia road (main road to/from Rome), the remnants of a 2000 year-old Roman villa, and two existing tunnels. Stiff silty clay dominates the alignment. According to the Analysis of Controlled DEformations (ADECO) principles, each tube was excavated full face to 260 m2. Compared to Sequential Excavation Method (SEM), this highly simplifies construction, leads to construction industrialization, and allows for full control of the ground ahead of the face, which is used as a stabilization measure. In order to pre-confine the tunnel core, Trevi roto-injection technique was used to create an umbrella of overlapping sub-horizontal reinforced jet-grouting columns ahead of the face, while avoiding up heave of the ground or emptying of the columns. Stiff preliminary lining sitting on sub-horizontal jet-grouting columns, final invert close to the tunnel face, and final lining no more than 50 m behind the face ensured that the pre-confinement ahead of the tunnel face became effective confinement around the cavity. The tunnels were finished on schedule and within budget with a mere 1 cm of settlement.  相似文献   

9.
Fire detection experiments in a road traffic tunnel were performed in the Runehamar test tunnel 5th–8th March 2007. The Runehamar test tunnel is a full profile road traffic tunnel, 1.65 km long, located outside Åndalsnes, Norway. The goal was to examinate smoke and heat detection systems to determinate what kind of principle best suited for detecting a fire in an early stage. The systems were tested during small Heptane pool fires, varying between 0.16 m2 and 1 m2, giving heat release rates from 0.2 MW to 2.4 MW accordingly, and one car fire of about 3–5 MW, and with wind conditions varying from 1.1 m s?1 to 1.6 m s?1. The size of the fires, were designed to be in the range from impossible to difficult to detect. The results were conclusive. Earliest detection of a car fire, fire starts inside, was by smoke detection given fixed limits (3000 μg m?3). With open pool fires, or immediate flames, continues fibre optical heat detection systems was faster given the limits 3 °C/4 min.  相似文献   

10.
Construction of tunnels in urban cities may induce excessive settlement and tilting of nearby existing pile foundations. Various studies reported in the literature have investigated the tunnel–soil–pile interaction by means of field monitoring, centrifuge and numerical modelling. However, the load transfer mechanism between piles in a group, the induced settlement and the tilting of a pile group due to tunnel advancement has not been investigated systematically and is not well understood. This study conducts three-dimensional, coupled-consolidation finite element analyses to investigate tunnelling effects on an existing 2 × 2 pile group. The construction of a 6 m diameter (D) tunnel in saturated stiff clay is simulated. Responses of the pile group located at a clear distance of 2.1 m (0.35D) from a tunnel constructed at three different cover-to-diameter-of-tunnel ratios (C/D) of 1.5, 2.5 and 3.5 are investigated. The computed results are compared to published data based on field monitoring. It is found that the most critical stage for settlement, tilting and induced bending moment of pile group due to tunnelling is when the tunnel face is close to the pile group rather than at the end of tunnel excavation. The depth of the tunnel relative to the pile group has a vital influence on the settlement, tilting of pile group and the load transfer mechanism between piles in pile group induced by tunnel excavation. Tunnelling near the mid-depth of the pile group (i.e. C/D = 1.5) induces the largest bending moment in the piles, but the settlement and tilting of the pile group are relatively small. Based on a settlement criterion, apparent loss of capacity of the pile group is 14% and 23% for tunnels constructed at depths of C/D = 1.5 and at both C/D = 2.5 and 3.5, respectively. The largest load redistribution between the front and rear piles in the group and the largest tilting of the pile cap towards the tunnel occurs when tunnel excavated at C/D = 2.5.  相似文献   

11.
Face stability is critical for ground settlement and construction safety control in shield tunneling. In this paper, a series of 3D large-scale model tests with a tunnel of 1 m diameter were conducted in dry sand for various cover-to-diameter ratios C/D = 0.5, 1, and 2 (i.e., relative depth; C is the cover depth and D is the diameter of tunnel). Each test provided a measurement of the support pressure and the ground settlement with the advance of face displacement. The evolution of soil arching during face failure was investigated by monitoring the redistribution of earth pressure in front of the face in the test case of C/D = 2. In the displacement-controlled face failure tests in the medium density sands, the support pressure dropped steeply to the minimum value, then increased to a steady state with the continuing increase in the face displacement. Relationships between the support pressure and face displacement for various cover depths were also verified by the numerical analysis using the finite difference program, FLAC3D (Itasca, 2005). The limit support pressure increases with the increase of the relative depth C/D and then tends to be constant. A significant rotation of principal stress axes in the upward arches in the soil during face failure was found in the tests. A two-stage failure pattern is proposed based on the observation of earth pressure. The theoretical and empirical formulas for estimating limit support pressure were verified by the tests results.  相似文献   

12.
Drilling and blasting is the most widely used excavation method in mining and tunnelling especially in hard rock conditions. But in recent years, the application of roadheaders and impact hammers in hard rock, especially in fractured geological formations has increased considerably. However, it is strongly emphasized that the prediction of the machine performance plays an important role in the time scheduling and in the economy of tunnelling projects and accumulated data will serve a sound basis for performance prediction models.This paper presents information on Istanbul Kadikoy–Kartal metro tunnels which are planned to be constructed in two stages, the first one which is in Kozyatagi–Kadikoy direction and the second in Kozyatagi–Kartal direction. The construction method of the Kozyatagi–Kadikoy station tunnels is first summarized and later, the performance of a roadheader, impact hammer and the results of drilling and blasting methods are compared.The results of this study show that machine utilization time is 28.2% for roadheader and 14.2% for impact hammers. Average net cutting rates (NCR) are 32.26 m3/h for roadheader (218.3 m3/day), net breaking rate (NBR) 13.1 m3/h (45 m3/day) for impact hammers and production rate with drill and blast method (D&B) is found to be 187 m3/day.  相似文献   

13.
Historically, attempts to use tunnel boring machines (TBMs) in Himalayan geology have been unsuccessful, particularly where weak rocks exist at the significant depths often required for hydroelectric hydraulic tunnels resulting in squeezing ground conditions. The use of segmental tunnel linings erected by shielded TBMs presents additional risk, such that the advantages of potentially high rates of advance using this form of construction have not previously been realised. Programme demands for the 330 MW Kishanganga Hydroelectric Project in India required that 15 km of the 23 km headrace tunnel be constructed using a double-shield TBM erecting a segmental lining. Preliminary studies suggested difficult ground due to squeezing conditions along the 1400 m deep tunnel through weak meta-sedimentary rocks. To allow planning and construction to commence, a risk management approach to design and construction was formulated with contingency procedures and criteria developed to allow the risks to the TBM and the lining to be managed effectively. Advanced numerical modelling included analysis of the tunnel with the ground represented by a Stress Hardening Elastic Viscous Plastic (SHELVIP) model to take account of time dependent loading. The Kishanganga tunnel represents the first segmentally lined TBM tunnel to be successfully constructed in the Himalaya. This paper describes the risk-mitigation approach, the special measures developed to address the risks, the numerical modelling and laboratory testing undertaken, and includes results from the segmental lining monitoring. Recognition of the risks, the development of an innovative methodology and the provision of the means by which geotechnical risk could be managed effectively during construction, gave confidence to all stakeholders to proceed with a method of construction that had not previously been implemented successfully in the Himalaya.  相似文献   

14.
This paper presents a case study of constructing a large-section long pedestrian underpass using pipe jacking method in Nanjing, China. The underpass, having a width of 7 m and a height of 4.3 m, was jacked 94.5 m in muddy silty clay under a busy roadway with 6.2 m overburden soil, meanwhile it traverses above the existed shield metro tunnels with just 4.5 m from the underpass bottom to tunnel vault. This paper introduced the design and construction schemes of this project in detail. A pre-construction three dimensional numerical simulation was conducted to investigate the responses of the roadway and metro tunnels to pipe jacking construction. Based on the simulation results, the field monitoring program was proposed, and the tunnels deformation and ground settlement were constantly monitored. The field performances of the metro tunnels and roadway were analyzed according to the monitoring data. In the jacking process, the micro-underbreak method was adopted. In order to decrease the tunnels uplift and ground settlement, the actual volume of soil conveyed out from soil chamber to ground surface was kept 95–98% of theoretical soil volume cut by cutter head. In general, this project is completed successfully without taking any additional time and money-consuming deformation control measures. The ground traffic and underneath metro runs well during the whole construction process.  相似文献   

15.
A set of experiments was carried out in a 1/9 reduced-scale single-track railway tunnel to investigate the effect of fuel area size on the temperature distribution and behavior of fires in a tunnel with natural ventilation. Methanol pool fires with four different fuel areas 0.6 × 0.3 m2 (1 pan), 1.2 × 0.3 m2 (2 pans), 2.4 × 0.3 m2 (4 pans) and 3.6 × 0.3 m2 (6 pans), were used in these experiments. Data were collected on temperatures, radiative heat flux and mass loss rates. The temperature distribution and smoke layer in the tunnel, along with overflow dimensions and radiant heat at the tunnel entrance were analyzed. The results show that as the fuel area enlarges, the fire gradually becomes ventilation-controlled and the ceiling temperature over the center of fire source declines. Burning at the central region of fire source is depressed due to lack of oxygen. This makes the temperature distribution along the tunnel ceiling change from a typical inverted V-shape to an M-shape. As observed in the experiments, a jet flame appeared at tunnel entrances and both the size and temperature of the flame increased with the enlargement of fuel area leading to a great threat to firefighters and evacuees in actual tunnel fires.  相似文献   

16.
Since the construction of the first expressway in the 1970s, the total length of expressways in Taiwan has increased to over 1 000 km, of which 40 km are aligned with tunnels. These twin-tube tunnels, which have two or three lanes in each tube, are characterized by large cross-sections. Due to the complicated topography and heterogeneous geological conditions of Taiwan, tunnel construction has encountered many difficulties. Thus, many advanced excavation methods were developed during tunnel construction. To satisfy the concurrent requirements of safety, economy and efficiency, new construction methods and techniques should be developed or introduced. Moreover, environmental protection and ecological conservation must be paid increasing attention to the goal of substantial development.  相似文献   

17.
The paper is dedicated to the case history of a 13 m wide, 17 m high and 40 m long service tunnel at Toledo Station, previously constructed in a deep open shaft and belonging to the Line 1 of the Napoli underground network. The existing Line 1 has been recently extended with a new stretch consisting of five new stations connected by twin rail tunnels for a total length of about 5 km. Toledo Station main shaft is located by a side of the line and it is connected to the pedestrian platforms by the above mentioned large size service tunnel. The station is situated in the historical center of the city of Napoli, under a deeply urbanized area. In Fig. 1 a longitudinal section of the main shaft of the station and of the large service tunnel with the above and surrounding buildings is sketched. The focus of this paper is on the settlement caused by the tunnel excavation and on the use of the Artificial Ground Freezing (AGF) technique to allow the safe excavation of the large crown of the service tunnel, located about one half in a silty sand layer and one half in yellow tuff, well below the groundwater table.  相似文献   

18.
Shield tunnel construction in a dense strata often encounters malfunction of shield-tunneling machine or abrasion of cutters. Accessing to an excavation chamber under compressed air is a main method to repair and replace worn cutters. And many safety issues such as stability of the excavation face were involved. However, the face stability due to opening an excavation chamber was not fully studied. To overcome this shortcoming, face support scheme and stability analysis were presented in a case history of opening the pressure chamber for a large-diameter (up to 14.93 m) slurry shield tunnel constructed underneath Nanjing Yangtze River. Since most of the damaged cutters were distributed along the edge of cutting wheel, only top 3 m of tunnel face within the chamber needed to be supported by compressed air, and remaining area would also to be supported by slurry pressure. A series of simple primary laboratory tests were carried out to design an optimum slurries mixing scheme to support the tunnel face as accessing to the pressure chamber in the project. The face stability was analyzed in terms of the pressure equilibrium (i.e., internal and external pressures) as well as three-dimensional numerical analysis by adopting properties of soils and filter cakes from laboratory tests. By injecting lower density slurry into the sand to form a stable infiltration zone, followed by using higher density slurry to create a filter cake at tunnel face, compressed air-support system could ensure face stability during maintenance of cutter wheel. The success of applying the mixed slurry and compressed air-support scheme in this project is valuable to shield tunnel constructions in similar ground conditions.  相似文献   

19.
The use of terrestrial laser scanning technology in engineering surveys is gaining an increasing interest due to the very high spatial density of the acquired data. Recent improvements regarding the speed, accuracy, software algorithms and the fall in price have introduced a high potential for large scale applications of this technology in highly demanding engineering environments such as tunnels. Railway tunnels, in particular those of a long length, create challenges for surveyors due to their elongation to obtain satisfactory geometry of the scanned data. The purpose of this paper is to give an optimal solution for surveying tunnel geometry using laser scanning technology to reliably inspect railway tunnels and create “as-built” documentation.The proposed methodology provides optimisation of scanning parameters, scans registration, the georeferencing approach and the survey control network design. The maximal size of the scanner shifting along the tunnel alignment is primarily conditioned by factors including the incidence angle of the laser beam and the point density distribution. The authors introduce the so-called arbitrary georeferencing approach in long tunnel scanning that controls the point cloud geometric distortions to the required limits and contributes to time and material resources savings. Optimal design of the survey control network ensures the required positional accuracy and the reliability of the measurements, together with a cost effective approach to tunnels surveying.The proposed methodology is followed by the empirical results of the modelling and profiling of 12 tunnels in a single track railway. The lengths of these tunnels are from 60 m to 1260 m, with a total length of 3.5 km. Due to the specific geometry of the case study tunnels, the maximal favourable laser incidence angle is 78° with a distance of 13 m and consequently the optimal size of the scanner shifting along the tunnel alignment is 26 m. The survey control network is designed with the condition that the optimal reliability factors are within the required limits for engineering networks. A priori estimation of the control network positional uncertainty and a posteriori adjustment results shows that the achieved positional accuracy of the control points is approximately five times better than the requested absolute accuracy of the tunnel model: σm = 2 cm. On the largest tunnel example it is shown that the arbitrary georeferencing approach assures that the optimal registration error size is within the requested limits.  相似文献   

20.
The Zhegu mountain tunnel is a typical long, deep-buried highway tunnel at a high altitude, subjected to low temperatures and high geostress. The tunnel is excavated in carbon phyllite and slate at depths of up to 1000 m below ground, which has resulted in extreme deformation, especially in a depth of 3 m from the tunnel perimeter. The maximum deformation was monitored to be 60 cm, with a maximum deformation speed of 39.3 mm/day. In addition, it took 60–120 days to complete 90% of the deformation. The deformation of the Zhegu mountain tunnel is characterized by serious subsidence of the arch, squeezing outwards of sidewalls, buckling failure of sidewalls and local collapse. The swelling of soft rock is found not to be a main factor of large deformation in the subject tunnel. Three mechanisms of large deformation are derived based on the characteristics and geological conditions, which are plastic flow of soft rock, shear sliding of wedges, and bending of thin-layered soft rock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号