首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, ‘site efficiency,’ was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. ‘Site efficiency’ varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme.  相似文献   

2.
Particulate air pollution is significantly elevated during the winter in Christchurch, New Zealand, largely attributable to use of wood burners for domestic home heating, topography, and meteorological conditions. Polycyclic aromatic hydrocarbons (PAHs) are a key component of airborne particulate matter (PM) and urinary 1-hydroxypyrene (1-OHP) has previously been used to assess exposure of people to PAHs. We examined urinary 1-OHP in Christchurch male non-smoking schoolchildren (12-18 yr) on two occasions after high pollution events (48 and 72 microg PM(10)/m(3) 24-h average) and two occasions during periods of low pollution (19 and 12 microg PM(10)/m(3)). Concentrations of urinary 1-OHP were significantly elevated in the students during high pollution events (median (mean+/-SD) 0.043 (0.051+/-0.032) and 0.042 (0.060+/-0.092) micromol OHP/mol creatinine respectively) compared with low pollution periods (median (mean+/-SD) 0.019 (0.026+/-0.032) and 0.025 (0.028+/-0.018) micromol/mol creatinine respectively). The observed 1-OHP concentrations are at the lower end of those determined in children and non-occupationally exposed adults in international studies and suggest a generally low exposure to PAHs. The increased urinary 1-OHP concentrations following nights of elevated particulate concentrations in ambient air suggest increased exposure to ambient air pollution during winter time, and could potentially be used as a biomarker of exposure in this population.  相似文献   

3.
The objective of this paper is to devise a way to facilitate the use of fixed air monitors data in order to assess population exposure. A weighting scheme that uses the data from different monitoring sites and takes into account the time-activity patterns of the study population is proposed. PM2.5 personal monitoring data were obtained within the European EXPOLIS study, in Grenoble, France (40 adult non-smoking volunteers, winter 1997). Volunteers carried PM2.5 personal monitors during 48 h and filled in time-activity diaries. Workplaces and places of residence were classified into two categories using a Geographic Information System (GIS): some volunteers' life environments are seen as best represented by PM10 ambient air monitors located in urban background sites; others by monitors situated close to high traffic density sites (proximity sites). Measurements from the Grenoble fixed monitoring network using a TEOM PM10 sampler were available across the same period for these two types of sites (PM10block and PM10prox). These data were used to compute a translator parameter deltai that forces the measured PM2.5 personal exposures (PM2.5persoi) to equate the average PM10 urban ambient air concentrations ([PM10back + PM10prox]/2) measured the same days. Average deltai was 4.2 microg/m3 (CI95%[-3.4; 11.9]), with true average PM2.5 personal exposure being 36.2 microg/m3 (28.2; 44.1). PM10 ambient levels at the proximity site and at the background site were respectively PM10prox = 43.8 microg/m3 (37.1; 50.6) and PM10back = 37.0 microg/m3 (31.8; 42.3). In order to assess the consistency of this approach, six scenarios of 'proximity' and 'background' environments were accommodated, according to traffic intensity and road distance. Deltai was estimated for the entire EXPOLIS population and for subgroups, using terciles based on the percentage of time spent in proximity by each subject. Other similar studies need to be conducted in different urban settings, and with other pollutants, in order to assess the generalizability of this simple approach to estimate population exposures from air quality surveillance data.  相似文献   

4.
A new method using several different chemical scenarios is developed to predict chemical composition of fine (PM2.5) and total (PM10) aerosol. This method improves the accuracy of predicted PM concentrations. The Mesoscale Model version 5 (MM5) and a 3-dimensional Eulerian chemical model (CAMx4.2) are used to predict PM2.5 and PM10 concentrations using gridded input emissions (from the "Total" group) over a 48-72 h time period for Christchurch (New Zealand) for winter 2005. The aerosol concentrations are obtained for four different chemical compositions (chemical scenarios) of the input aerosol emissions. PM2.5 chemical compositions are based on previous Christchurch winter studies and from observations in other countries with similar winter pollution problems, and used in CAMx4.2 to model seven winter 2005 heavy pollution episodes. The error between observed and modelled PM2.5 concentrations is based on predictions of fine aerosol that are derived from linear regression with PM10. It is used to find the minimum difference between modelled and observed PM2.5 for an observation site located in the Christchurch residential area. Combination of the chemical scenarios with analysis of the minimum error is used to create a new complex chemical scenario. The new complex scenario is used to re-calculate all pollution episodes to obtain new values of PM with minimum error compared with observed aerosol concentrations. Mean Absolute Error of the calculated PM2.5 (for all pollution episodes) decreased from 21-24 microg m(-3) to 14-16 microg m(-3) compared with observations. The chemical composition of the modelled PM2.5 is also discussed.  相似文献   

5.
The chemical characteristics of ambient particulate matters in urban and rural areas of Hong Kong were determined in this study. A monitoring program starting from November 2000 to February 2001 (winter) and June 2001 to August 2001 (summer) for PM10 and PM2.5 was performed at three monitoring stations in Hong Kong. Twenty-four-hour PM10 and PM2.5 samples were collected once every 6 days at two urban sites, PolyU and KT, and every 12 days at a background site, HT, with Hi-Vol samplers. High concentrations of OC, EC (except in PolyU), water-soluble ions and elements were observed in winter among the three sampling sites for PM10 and PM2.5 fractions. Seasonal variations were significant in background HT. Dilution effect due to the increase in mixing depth and precipitation in summer reduced the concentrations of particulate matters. Long-range transport could contribute to the higher concentrations of particulate matter in the winter. Chemical mass closure calculations were performed for PM10 and PM2.5 observed. Mass closure improved when separate factors (1.4 and 1.9 respectively) were used to convert water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WINSOC) into corresponding organic masses. The urban sites showed high percentages of water-soluble ions in winter and high percentages of carbonaceous species in summer. Better results were obtained for the chemical mass closure analysis in winter than in summer. High temperature and solar radiation in summer increased the rate of the complex photochemical reaction in the atmosphere. Therefore the chemical mass closure analysis would underestimate the volatized species and secondary aerosols during summer.  相似文献   

6.
This paper examines the utility of The Air Pollution Model (TAPM; version 2) in simulating meteorology and dispersion of PM(10) for 1999 over the coastal city of Christchurch, New Zealand. Christchurch usually experiences severe degradation in air quality during austral winter. The formation of a nocturnal inversion layer and the emissions of particulate matter (PM(10)) mainly from solid fuel home heating appliances lead to severe smog episodes on an average of 30 nights during winter. The complex local topography surrounding the city in combination with influences from the urban areas can produce complicated boundary layer winds during quiescent weather. Simulated PM(10) data are used for construction of annual exposure maps for the urban areas in order to assess the health impact of air pollutants due to chronic exposure (presented in an accompanying paper). Meteorology and PM(10) dispersion results are statistically compared with the only permanent air pollution monitoring station available in order to evaluate the model's performance. Statistical measures such as the Index of Agreement (IOA) between modelled and measured data indicate that the model performs well. IOA is greater than 0.6 for meteorological variables, and various calculated skill scores place confidence in the model's performance. However, TAPM has a tendency to overestimate surface wind speed over urban areas during stagnant nocturnal conditions, resulting in quick flushing of pollutants.  相似文献   

7.
Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. PRACTICAL IMPLICATIONS: This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.  相似文献   

8.
Epidemiological studies on health effects of outdoor air pollution are largely based on a single monitoring site to estimate the exposure of people living in urban areas. For such an approach two aspects are important: the temporal correlation and the spatial variation of the absolute levels of concentrations measured at different sites in an urban area. Whereas many studies have shown small spatial variability of fine particles in urban areas, little is known on how well a single monitoring station could represent the temporal and spatial variation of ultrafine particles across urban areas. In our study we investigated the temporal and spatial variation of particle number concentration (PNC) at four background sites in Augsburg, Germany. Two of them were influenced by traffic, one was placed in the outskirts of the city. The average PNC levels at two urban background sites with traffic impact were 16,943 cm(-3) and 20,702 cm(-3), respectively, compared to 11,656 cm(-3) at the urban background site without traffic impact (ratio 1.5 to 1.8). The Spearman correlation coefficients between the monitoring sites were high (r>0.80). The pronounced differences in absolute PNC levels suggest that the use of a single monitoring station in long-term epidemiological studies must be insufficient to attribute accurate exposure levels of PNC to all study subjects. On the other hand, the high temporal correlations of PNC across the city area of Augsburg implicate that in epidemiological time-series studies the use of one single ambient monitoring site is an adequate approach for characterizing exposure to ultrafine particles.  相似文献   

9.
Ambient particulate matter (PM(10)) in urban centres varies depending on emission sources, geography, demography, and meteorology. Hence physical (PM(10), wind speed, rainfall, temperature), chemical (polycyclic aromatic hydrocarbons, PAH), and toxicological (Ames Test, H4IIE EROD Assay) analyses were done on daily PM(10) (approximately 1640 m(3)/day) collected from three New Zealand urban sites where winter emissions were predominantly due to domestic home heating. Daily PM(10) levels ranged between 9.7 and 20.8 in summer and between 21.8 and 61.0 microg/m(3) in winter. Daily PAH concentrations were 0.5, 0.45, and 1.5 ng/m(3) in summer and 52.1, 128.9, and 5.8 ng/m(3) in winter at sites Christchurch, Alexandra and Dunedin, respectively. During winter, 74% of PM(10) extracts from all three sites showed significant mutagenicity in the Ames Test (TA 98, -S9), whereas approximately 25% of the daily PM(10) was mutagenic in summer. Benzo[a]pyrene and BaP carcinogenic equivalence concentrations during winter were strongly correlated to both mutagenicity and TCDD-like activity at two sites. Daily levels of TCDD toxicity equivalence concentrations ranged from 0.5 to 3.6 pg TCDD/m(3) air in summer and from 0.3 to 4009 pg TCDD/m(3) air in winter. Chemically and biologically derived TCDD toxicity equivalent concentrations were significantly correlated in all study locations indicating that PAH may represent most of the TCDD-like activity present in the PM(10).  相似文献   

10.
Many researches have shown that the particulate matter (PM) of air pollution could affect the pulmonary functions, especially for susceptible groups such as asthmatic children, where PM might decrease the lung function to different extents. To assess the effects of PM on health, most studies use data from ambient air monitoring sites to represent personal exposure levels. However, the data gathered from these fixed sites might introduce certain statistical uncertainties. The objectives of this study are to evaluate the effects of various size ranges of PM on peak expiratory flow rate (PEFR) of asthmatic children, and to compare the model performance of using different PM measurements (personal exposures versus fixed-site monitoring) in evaluation. Thirty asthmatic children, aged 6 to 12 years, who live near the fixed monitoring site in Sin-Chung City, Taipei County, Taiwan, were recruited for the study. Personal exposures to PM(1), PM(2.5), and PM(10) were measured continuously using a portable particle monitor (GRIMM Mode 1.108, Germany). In addition, an activity diary and questionnaires were used to investigate possible confounding factors in their home environments. The peak expiratory flow rate of each participant was monitored daily in the morning and in the evening for two weeks. Results showed several trends, although not necessarily statistically significant, between personal PM exposures and PEFR measurements in asthmatic children. In general, notable findings tend to implicate that not only fine particles (PM(2.5)) but also coarse particles (PM(2.5-10)) are likely to contribute to the exacerbation of asthmatic conditions. Stronger lagged effect and cumulative effect of PM on the decrements in morning PEFR were also found in the study. Finally, results of linear mixed-effect model analysis suggested that personal PM data was more suitable for the assessment of change in children's PEFR than ambient monitoring data.  相似文献   

11.
Indoor air pollution (IAP) from biomass fuels contains high concentrations of health damaging pollutants and is associated with an increased risk of childhood pneumonia. We aimed to design an exposure measurement component for a matched case-control study of IAP as a risk factor for pneumonia and severe pneumonia in infants and children in The Gambia. We conducted co-located simultaneous area measurement of carbon monoxide (CO) and particles with aerodynamic diameter <2.5 microm (PM(2.5)) in 13 households for 48 h each. CO was measured using a passive integrated monitor and PM(2.5) using a continuous monitor. In three of the 13 households, we also measured continuous PM(2.5) concentration for 2 weeks in the cooking, sleeping, and playing areas. We used gravimetric PM(2.5) samples as the reference to correct the continuous PM(2.5) for instrument measurement error. Forty-eight hour CO and PM(2.5) concentrations in the cooking area had a correlation coefficient of 0.80. Average 48-h CO and PM(2.5) concentrations in the cooking area were 3.8 +/- 3.9 ppm and 361 +/- 312 microg/m3, respectively. The average 48-h CO exposure was 1.5 +/- 1.6 ppm for children and 2.4 +/- 1.9 ppm for mothers. PM(2.5) exposure was an estimated 219 microg/m3 for children and 275 microg/m3 for their mothers. The continuous PM(2.5) concentration had peaks in all households representing the morning, midday, and evening cooking periods, with the largest peak corresponding to midday. The results are used to provide specific recommendations for measuring the exposure of infants and children in an epidemiological study. PRACTICAL IMPLICATIONS: Measuring personal particulate matter (PM) exposure of young children in epidemiological studies is hindered by the absence of small personal monitors. Simultaneous measurement of PM and carbon monoxide suggests that a combination of methods may be needed for measuring children's PM exposure in areas where household biomass combustion is the primary source of indoor air pollution. Children's PM exposure in biomass burning homes in The Gambia is substantially higher than concentrations in the world's most polluted cities.  相似文献   

12.
As epidemiological studies report associations between ambient air pollution and adverse birth outcomes, it is important to understand determinants of exposures among pregnant women. We measured (48-h, personal exposure) and modeled (using outdoor ambient monitors and a traffic-based land-use regression model) NO, NO(2), fine particle mass and absorbance in 62 non-smoking pregnant women in Vancouver, Canada on 1-3 occasions during pregnancy (total N=127). We developed predictive models for personal measurements using modeled ambient concentrations and individual determinants of exposure. Geometric mean exposures of personal samples were relatively low (GM (GSD) NO=37 ppb (2.0); NO(2)=17 ppb (1.6); 'soot', as filter absorbance=0.8 10(-5) m(-1) (1.5); PM(2.2)=10 microg m(-3) (1.6)). Having a gas stove (vs. electric stove) in the home was associated with exposure increases of 89% (NO), 44% (NO(2)), 20% (absorbance) and 35% (fine PM). Interpolated concentrations from outdoor fixed-site monitors were associated with all personal exposures except NO(2). Land-use regression model estimates of outdoor air pollution were associated with personal NO and NO(2) only. The effects of outdoor air pollution on personal samples were consistent, with and without adjustment for other individual determinants (e.g. gas stove). These findings improve our understanding of sources of exposure to air pollutants among pregnant women and support the use of outdoor concentration estimates as proxies for exposure in epidemiologic studies.  相似文献   

13.
The impact of an improved wood burning stove (Patsari) in reducing personal exposures and indoor concentrations of particulate matter (PM(2.5)) and carbon monoxide (CO) was evaluated in 60 homes in a rural community of Michoacan, Mexico. Average PM(2.5) 24-h personal exposure was 0.29 mg/m(3) and mean 48-h kitchen concentration was 1.269 mg/m(3) for participating women using the traditional open fire (fogon). If these concentrations are typical of rural conditions in Mexico, a large fraction of the population is chronically exposed to levels of pollution far higher than ambient concentrations found by the Mexican government to be harmful to human health. Installation of an improved Patsari stove in these homes resulted in 74% reduction in median 48-h PM(2.5) concentrations in kitchens and 35% reduction in median 24-h PM(2.5) personal exposures. Corresponding reductions in CO were 77% and 78% for median 48-h kitchen concentrations and median 24-h personal exposures, respectively. The relationship between reductions in median kitchen concentrations and reductions in median personal exposures not only changed for different pollutants, but also differed between traditional and improved stove type, and by stove adoption category. If these reductions are typical, significant bias in the relationship between reductions in particle concentrations and reductions in health impacts may result, if reductions in kitchen concentrations are used as a proxy for personal exposure reductions when evaluating stove interventions. In addition, personal exposure reductions for CO may not reflect similar reductions for PM(2.5). This implies that PM(2.5) personal exposure measurements should be collected or indoor measurements should be combined with better time-activity estimates, which would more accurately reflect the contributions of indoor concentrations to personal exposures. PRACTICAL IMPLICATIONS: Installation of improved cookstoves may result in significant reductions in indoor concentrations of carbon monoxide and fine particulate matter (PM(2.5)), with concurrent but lower reductions in personal exposures. Significant errors may result if reductions in kitchen concentrations are used as a proxy for personal exposure reductions when evaluating stove interventions in epidemiological investigations. Similarly, time microenvironment activity models in these rural homes do not provide robust estimates of individual exposures due to the large spatial heterogeneity in pollutant concentrations and the lack of resolution of time activity diaries to capture movement through these microenvironments.  相似文献   

14.
Apportionment of urban particulate matter (PM) to sources is central for air quality management and efficient reduction of the substantial public health risks associated with fine particles (PM(2.5)). Traffic is an important source combustion particles, but also a significant source of resuspended particles that chemically resemble Earth's crust and that are not affected by development of cleaner motor technologies. A substantial fraction of urban ambient PM originates from long-range transport outside the immediate urban environment including secondary particles formed from gaseous emissions of mainly sulphur, nitrogen oxides and ammonia. Most source apportionment studies are based on small number of fixed monitoring sites and capture well population exposures to regional and long-range transported particles. However, concentrations from local sources are very unevenly distributed and the results from such studies are therefore poorly representative of the actual exposures. The current study uses PM(2.5) data observed at population based random sampled residential locations in Athens, Basle and Helsinki with 17 elemental constituents, selected VOCs (xylenes, trimethylbenzenes, nonane and benzene) and light absorbance (black smoke). The major sources identified across the three cities included crustal, salt, long-range transported inorganic and traffic sources. Traffic was associated separately with source categories with crustal (especially Athens and Helsinki) and long-range transported chemical composition (all cities). Remarkably high fractions of the variability of elemental (R(2)>0.6 except for Ca in Basle 0.38) and chemical concentrations (R(2)>0.5 except benzene in Basle 0.22 and nonane in Athens 0.39) are explained by the source factors of an SEM model. The RAINS model that is currently used as the main tool in developing European air quality management policies seems to capture the local urban fraction (the city delta term) quite well, but underestimates crustal particle levels in the three cities of the current study. Utilizing structural equation modelling parallel with traditional principal component analysis (PCA) provides an objective method to determine the number of factors to be retained in a model and allows for formal hypotheses testing.  相似文献   

15.
The performance of a modified Harvard high-volume cascade impactor (HVCI) was evaluated in six field campaigns with size-segregated particulate samplings for chemical and toxicological characterization. The 7-week sampling campaigns in 2002-2003 in Duisburg (autumn), Prague (winter), Amsterdam (winter), Helsinki (spring), Barcelona (spring), and Athens (summer) were selected to represent contrasting urban environments and seasons of public health interest due to high particulate concentrations or previous findings in epidemiological studies. Particulate samples were collected in parallel with the HVCI (PM(10-2.5), PM(2.5-1), PM(1-0.2), PM(0.2)), a virtual impactor (VI; PM(10-2.5), PM(2.5)), and a Berner low-pressure impactor (BLPI; 10 stages between 0.035 and 10 mum in particle diameter) using a 3- or 4-day sampling duration. The campaigns exhibited different profiles with regard to particulate mass concentration, size distribution, chemical composition and meteorological conditions, thus providing a demanding setup for an overall field comparison of the HVCI with the VI and BLPI reference samplers. Size-segregated particulate mass concentration could be reasonably well measured with the present HVCI configuration. The coarse (PM(10-2.5)) and fine (PM(2.5)) particulate mass agreed within 10% with the low-volume reference samplers, and the four-stage size distribution of the HVCI followed the modal pattern of urban aerosol. The concentrations of chemical constituents measured and integrated especially for the HVCI-PM(2.5) differed to some extent from those measured from the corresponding VI-PM(2.5) samples. This implies that when investigating the association of toxicological responses with the chemical constituents of particulate matter, it is necessary to use the chemical composition data of the same samples as used in toxicological experiments.  相似文献   

16.
Epidemiologic studies have demonstrated that relative risks for mortality associated with ambient particulate matter (PM) concentrations vary with location in the U.S. with larger associations in both magnitude and strength observed in the East compared to the West. Two factors potentially contributing to the regional heterogeneity in PM-mortality associations observed are regional variations in PM composition and the ability of a single PM concentration estimate to represent the community-average exposure for an entire study area, which may lead to regional differences in exposure error. Variations in PM composition and the proportion of the population living in proximity to ambient monitors, an indicator of potential exposure error, are examined for the 20 most populated and 10 mid-size study areas included in the National Morbidity, Mortality and Air Pollution Study (NMMAPS). Clear differences in PM and in the proportion of the population living in proximity to ambient monitors are found for some of these cities. Differences in these exposure parameters may be interpreted more reasonably in terms of north-south differences compared to east-west differences, and may need to be considered when conducting future epidemiologic studies that aim to examine the factors that influence the regional variability in PM-mortality associations.  相似文献   

17.
We examined the chemical composition and biological response associated with particulate emissions from the two largest cities in New Zealand, Auckland and Christchurch. The organic and water-soluble fractions were isolated from the particulate matter (PM). The organic fraction was examined for PAH content, direct mutagenicity, CYP1A1 induction, and cytotoxicity and TNF-α release in RAW264.7 macrophages. The water-soluble fraction was examined for metal content, and cytotoxicity and TNF-α release in RAW264.7 macrophages.Particulate, PAH and water-soluble metal concentrations were all higher in PM collected from Christchurch, being highest in May-July when woodburners for home heating are widely in use. In contrast, PM from Auckland showed the highest concentrations in March, but PAH and metal concentrations were highest in July. We found marked differences in the biological response elicited by ambient air PM: the organic extracts of Christchurch PM2.5 and PM10 showed higher mutagenicity and CYP1A1 induction compared with PM10 from Auckland. In contrast, water-soluble extracts of Auckland PM were more cytotoxic and resulted in greater TNF-α release than those from Christchurch PM, although they had a lower metal content. The organic fraction of PM from both cities did not induce any cytokine release, and the organic extract from Auckland samples showed no cytotoxicity; smaller PM mass was available for testing for these samples. Biological responses typically occurred at lower doses of the organic extract, indicating that organic components may be more important in eliciting effects than water-soluble components.Preliminary apportionment of the biological responses to the dominant sources of PM in both cities-woodburners and vehicles-was undertaken. This indicated that for both cities, vehicles have a greater contribution to the direct mutagenic activity of ambient PM than woodsmoke, despite a lower contribution to ambient PM. In contrast, woodsmoke is estimated to have a greater contribution to CYP1A1 induction of ambient PM. The calculated activity forms only a small proportion of the activity observed in extracts of ambient PM from Christchurch, particularly for mutagenicity, and may indicate a significant influence of atmospheric transformation processes on biological response. Only data for mutagenicity and CYP1A1 activity could be used for apportionment as low and/or variable cytotoxicity or TNF-α release response were obtained for either the individual source or ambient PM at the doses tested. Further, in the case of the water-soluble extracts from Auckland, additional components are suggested to have a role in the observed activity.  相似文献   

18.
This study compared commuters' exposures to particulate matter (PM) while using motorcycles, cars, buses, and the mass rapid transit (MRT) on the same routes in Taipei, Taiwan. Motorcycle commuters who had the shortest travel time (28.4+/-4.2 min) were exposed to the highest concentrations of PM(10) (112.8+/-38.3 microg/m(3)), PM(2.5) (67.5+/-31.3 microg/m(3)), and PM(1.0) (48.4+/-24.7 microg/m(3)) among four commuting modes. By contrast, car commuters were exposed to the lowest PM concentrations and had the second shortest travel time among them. Motorcycle commuters' high trip-averaged PM concentrations and bus commuters' long commuting time (43.1+/-5.1 min) resulted in their high whole-trip PM exposures. Size fractions of PM were relatively consistent across PM exposures of the four commuting modes with fine particles (PM(2.5)) contributing to 53-60% of PM(10) and submicron particle (PM(1)) contributing to 39-43% of PM(10). Motorcycles idled at traffic lights and bus doors opened at stops increased commuters' PM exposures. Fixed-site monitoring data explained well the variation of whole-trip PM(10) exposure of car (r(2)=0.63) and MRT (r(2)=0.52) commuters, and of whole-trip PM(2.5) exposure of car (r(2)=0.76), MRT (r(2)=0.73) and motorcycle (r(2)=0.64) commuters in regression analyses. The coefficients (slopes) of regression between fixed-site monitoring data and PM(2.5) exposures were less than 1 for car and MRT commuters but greater than 1 for motorcycle commuters. In conclusion, proximity to traffic emissions contributes to a person's high PM exposure during his or her daily commute. This proximity occurs when people use motorcycles on roads and when bus/MRT commuters walk or wait along commuting routes. Fixed-site air monitoring data can under-estimate motorcycle commuters' PM(2.5) exposures but over-estimate car and MRT commuters' PM(2.5) exposures.  相似文献   

19.
To protect public health from PM2.5 air pollution, it is critical to identify the source types of PM2.5 mass and chemical components associated with higher risks of adverse health outcomes. Source apportionment modeling using Positive Matrix Factorization (PMF), was used to identify PM2.5 source types and quantify the source contributions to PM2.5 in five cities of Connecticut and Massachusetts. Spatial and temporal variability of PM2.5 mass, components and source contributions were investigated. PMF analysis identified five source types: regional pollution as traced by sulfur, motor vehicle, road dust, oil combustion and sea salt. The sulfur-related regional pollution and traffic source type were major contributors to PM2.5. Due to sparse ground-level PM2.5 monitoring sites, current epidemiological studies are susceptible to exposure measurement errors. The higher correlations in concentrations and source contributions between different locations suggest less spatial variability, resulting in less exposure measurement errors. When concentrations and/or contributions were compared to regional averages, correlations were generally higher than between-site correlations. This suggests that for assigning exposures for health effects studies, using regional average concentrations or contributions from several PM2.5 monitors is more reliable than using data from the nearest central monitor.  相似文献   

20.
Little is known about the particulate exposure of populations living along major urban roads. The objective of this pilot study was to explore the small-scale spatial and temporal variability of the absorption coefficient of PM2.5 filters, as a surrogate for elemental carbon, in relation to levels of PM2.5, at residential sites with varying traffic densities in a large Canadian city. Concurrent 24-h measurements were performed at four residential sites during 7 weeks. A gradient existed across all four sites for the absorption coefficient of the filters (and NO2 levels). In contrast, the levels of PM2.5 were quite similar at all sites. The difference in the filter absorption coefficient of PM2.5 filters, between an urban background and a residential traffic site (with about 30000 vehicles/day), expressed as a percentage of the background site, was 40%. These results indicate that spatial variability in PM2.5 absorption coefficient can be observed with traffic intensity on a small scale within a North American city and suggests that regression modelling approaches similar to those used in European studies could be used to estimate exposure of the general population to traffic-related particles on a local scale in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号