首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correct assessment of the shear strength of rock joints is essential for several rock-engineering projects. The shear behavior of rock joints is usually investigated in the laboratory using a direct shear apparatus, wherein the forces or stresses acting normal to the direction of shear displacement are maintained constant during the shear process. However, this apparatus may be quite inappropriate for situations in which the normal stress on the joint surfaces changes considerably during the shear process. In the present study, an automated servo-controlled direct shear apparatus and computer control system have been developed to automatically accommodate the change in normal stress with dilation under the constant normal stiffness (CNS) boundary condition. A new LabVIEW-based system is used to described the performance of instrument control, data acquisition and storage operations of the new apparatus. The results of the shear tests conducted using the artificially prepared joint specimens show that the normal stiffness has a significant influence on the mechanical behavior of joints during the shear process.  相似文献   

2.
Discontinuities in rock masses have an important influence on deformational behaviour of blocky rock systems. For a single rock joint, the roughness of its surface is of paramount importance to its mechanical and hydraulic properties, such as friction angle, shear strength, and dilatancy/aperture. Many methods have been used to characterize the surface roughness of rock joints, such as joint roughness coefficients (JRC), root mean square (RMS) value, structure function (SF) etc. However, most of these methods can only be used in the 2-D models. In this study, we carried out direct shear experiments on rock joints under both constant normal load (CNL) and constant normal stiffness (CNS) conditions, and measured the surfaces of rock joints before and after shearing, using a 3-D laser scanning profilometer system. By using a 3-D fractal evaluation method of roughness characterization, the projective covering method (PCM) and a direct shear apparatus of high accuracy, the relation between mechanical properties of rock joints under different boundary conditions and the change of their fractal dimensions in both 2-D and 3-D models have been examined, which gives a new approach to accurately evaluate the evolution of roughness of rock joint surfaces and its influence on the hydro-mechanical behaviours of rock joints.  相似文献   

3.
Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering. It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system. Previous studies have proposed some optimal rib parameters (e.g. rib spacing); unfortunately, the interface shear behaviors are generally ignored. Therefore, determination of radial stress and radial displacement on the bolt-grout interface using traditional pull-out tests is not possible. The load-bearing capacity and deformation capacity vary as bolt profiles differ, suggesting that the support effect of the bolting system can be enhanced by optimizing bolt profiles. The aim of this study is to investigate the effects of bolt profiles (with/without ribs, rib spacing, and rib height) on the shear behaviors between the rock bolt and grout material using direct shear tests. Thereby, systematic interfacial shear tests with different bolt profiles were performed under both constant normal load (CNL) and constant normal stiffness (CNS) boundary conditions. The results suggested that rib spacing has a more marked influence on the interface shear behavior than rib height does, in particular at the post-yield stage. The results could facilitate our understanding of bolt-grout interface shear behavior under CNS conditions, and optimize selection of rock bolts under in situ rock conditions.  相似文献   

4.
Rock joints infilled with sediments can strongly influence the strength of rock mass. As infilled joints often exist under unsaturated condition, this study investigated the influence of matric suction of infill on the overall joint shear strength. A novel technique that allows direct measurement of matric suction of infill using high capacity tensiometers (HCTs) during direct shear of infilled joints under constant normal stiffness (CNS) is described. The CNS apparatus was modified to accommodate the HCT and the procedure is explained in detail. Joint specimens were simulated by gypsum plaster using three-dimensional (3D) printed surface moulds, and filled with kaolin and sand mixture prepared at different water contents. Shear behaviours of both planar infilled joints and rough joints having joint roughness coefficients (JRCs) of 8–10 and 18–20 with the ratios of infill thickness to asperity height (t/a) equal to 0.5 were investigated. Matric suction shows predominantly unimodal behaviour during shearing of both planar and rough joints, which is closely associated with the variation of unloading rate and volumetric changes of the infill material. As expected, two-peak behaviour was observed for the rough joints and both peaks increased with the increase of infill matric suction. The results suggest that the contribution of matric suction of infill on the joint peak normalised shear stress is relatively independent of the joint roughness.  相似文献   

5.
王腾  张哲 《岩土工程学报》2019,41(10):1921-1927
竖向循环荷载作用下桩土界面的作用机理是研究桩土摩擦疲劳的关键。针对循环荷载作用下桩-粉土界面的剪切性能,使用改进的剪切试验装置在恒刚度条件下进行循环剪切试验,研究循环次数、累积位移和法向刚度对其摩擦疲劳性能、循环后单调剪切性能的影响。试验结果表明,粉土在循环剪切过程中,法向应力和剪应力在初始10个循环内随循环数增加快速衰减,随着循环进行,逐渐趋于稳定;单次循环内在剪切位移方向变化时,土体呈现表现出剪缩-剪胀-剪缩交替现象,总体变形呈现剪缩的趋势;循环荷载作用下,粉土界面的法向应力和剪应力随法向刚度增大衰减速率增大,达到稳定的累积循环位移越小;粉土循环后的单调剪切、法向应力恢复的单调剪切的剪应力比小于首次单调剪切试验值,且法向应力恢复的循环后剪切试验的剪胀程度较小,表明循环剪切过程中界面处粉土颗粒棱角破碎,颗粒变得光滑。在对试验数据分析的基础上,提出了与累积位移、法向刚度和初始应力相关的无量纲累积位移,建立了法向应力和界面摩擦角随累积位移的衰减方程。  相似文献   

6.
The typical shear behaviour of rough joints has been studied under constant normal load/stress(CNL)boundary conditions,but recent studies have shown that this boundary condition may not replicate true practical situations.Constant normal stiffness(CNS) is more appropriate to describe the stressestrain response of field joints since the CNS boundary condition is more realistic than CNL.The practical implications of CNS are movements of unstable blocks in the roof or walls of an underground excavation,reinforced rock wedges sliding in a rock slope or foundation,and the vertical movement of rock-socketed concrete piles.In this paper,the highlights and limitations of the existing models used to predict the shear strength/behaviour of joints under CNS conditions are discussed in depth.  相似文献   

7.
Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing,inducing dilation and resulting in nonlinear joint shear strength and shear stress vs.shear displacement behaviors.The Barton-Bandis(B-B) joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints.The B-B model accounts for asperity roughness and strength through the joint roughness coefficient(JRC) and joint wall compressive strength(JCS) parameters.Nevertheless,many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr-Coulomb(M-C) model,which is only appropriate for smooth and non-dilatant joints.This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior.To bridge the B-B and the M C models,this paper aims to provide a linearized implementation of the B-B model using a tangential technique to obtain the equivalent M-C parameters that can satisfy the nonlinear shear behavior of rock joints.These equivalent parameters,namely the equivalent peak cohesion,friction angle,and dilation angle,are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing.The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre-and post-peak regions of shear displacement,respectively.Likewise,the pre-and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established.Verifications of the linearized implementation of the B-B model show that the shear stress-shear displacement curves,the dilation behavior,and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.  相似文献   

8.
 从锦屏二级水电站深埋隧洞施工中发现结构面的剪切滑移可能诱发极强岩爆,因此为研究结构面对滑移型岩爆的控制机制,利用水泥砂浆作为模型材料制作了3种不同起伏高度的不规则锯齿形结构面并进行了直剪试验,研究了不同起伏高度、剪切速率和法向压力下的结构面的强度特征和破坏机制,并对现场的滑移型岩爆进行了初步的机制分析。研究结果表明,每种起伏高度的结构面的峰值抗剪强度和残余强度均随法向压力增大而增大;随着起伏高度的增加,结构面的抗剪强度、内摩擦角逐渐增加;随着剪切速率增加结构面抗剪强度具有先增加后减小的趋势;不同工况下结构面的破坏机制可归纳为锯齿的滑移错断机制、结构面上下盘的拉伸断裂机制和上盘前端下盘后端的冲击断裂机制,结构面的起伏高度越大、法向应力越高,冲击断裂的规模越大;现场结构面的应力集中程度、结构面面壁凸台的尺寸、强度和位置等决定了滑移型岩爆发生的等级、爆坑深度。  相似文献   

9.
 利用高强石膏材料浇注含不同一阶和二阶起伏度的岩体节理模拟试件,通过节理在不同一阶和二阶起伏度及法向应力下的常法向荷载剪切试验,对其剪切强度特性进行研究,分析一阶和二阶起伏度及法向应力对剪切强度的影响规律。试验结果表明:含二阶起伏体节理试件的剪切强度–剪切位移曲线有多个峰值剪应力出现,只含一阶起伏体节理的峰值剪应力不明显;节理剪切强度随着一阶和二阶起伏度及法向应力的增大而增大;随着二阶起伏度与一阶起伏度比值的增大,剪切强度先增大后降低。对试验数据进行回归分析,提出能反映一阶和二阶起伏度及法向应力影响的剪切强度经验公式。  相似文献   

10.
依据最小余能原理,在考虑节理岩体中锚杆剪切变形的基础上,分析了节理面水平剪切位移与锚杆轴向及切向变形之间的关系。结合锚杆受力特点拟定了锚杆屈服模式的判定流程。建立了考虑"等效剪切面积"的加锚节理面抗剪强度理论计算模型,并通过室内物理试验验证了理论计算模型的准确性。讨论了锚杆倾角、围岩抗压强度、锚杆直径、法向应力等因素对加锚节理面抗剪强度的影响规律。结果表明:所建立的锚杆剪切力学模型能够较好的反映锚杆轴向力及剪切力对节理面抗剪强度的贡献;考虑"等效剪切面积"的加锚节理面抗剪强度计算结果与试验结果较为吻合;锚杆倾角及围岩抗压强度越大,锚杆轴向力越小,剪切力越大;锚杆直径增大,锚杆轴向力及剪切力都会增大;节理面法向应力会显著影响剪胀效应,法向应力越大,节理面抗剪强度越高。  相似文献   

11.
A cyclic shear testing system was established to investigate the mechanical behavior of rough rock joints under cyclic loading conditions. Laboratory cyclic shear tests were conducted for two joint types of Hwangdeung granite and Yeosan marble: saw-cut and split tensile joints. Prior to test, the roughness of each specimen was characterized by measuring the surface topography using a laser profilometer. Several important aspects of cyclic joint behavior, such as high peak shear strength and non-linear dilation in the first loading cycle, different frictional resistance for the reversed shear loading direction, and anisotropic shear behavior and its dependence on the normal stress level were identified from the cyclic shear test results. These features and their variations in the subsequent loading cycles are mainly due to the effect of second order asperities and strength of rock material. It was also observed from experimental results that degradation of asperities under cyclic shear loading also followed the exponential degradation laws for asperity angle and the mechanism for asperity degradation would be different depending upon the shearing direction and the type of asperities. Based on the experimental results an elasto-plastic constitutive model, which can consider the degradation of second order asperities, was proposed. Numerical simulations for the monotonic and cyclic shear loading indicated agreement with the laboratory test results.  相似文献   

12.
The dynamic frictional behaviors of natural discontinuities (joints, fractures, faults) play an important role in geohazards assessment; however, the mechanisms of the dynamic fault weakening/strengthening are still unclear. In this paper, a dynamic shear box was used to perform direct shear tests on saw-cut (planar) and natural (rough) granite fractures, with different normal load oscillation amplitudes. Based on the recorded shear forces and normal displacements, the shear forces, apparent friction coefficients and normal displacements are found to change periodically with oscillated normal loads and are characterized by a series of time shifts. The observed changing patterns are similar for the rough and planar fractures. Compared with the test data under constant normal load (CNL), small/large normal load oscillation amplitude enhances/reduces the peak shear strength, with a critical point. The magnitude of critical normal load oscillation for the rough fractures is smaller than the planer fractures. The results imply that dynamic fault weakening/strengthening can be achieved by both normal load oscillation amplitudes and slip surface topography. The rough fractures with larger normal oscillation amplitude can easily cause frictional weakening under stress disturbance.  相似文献   

13.
 工程上常采用不随应力变化的岩石结构面抗剪强度参数,不能反映结构面摩擦角应力效应的变化规律。为研究结构面摩擦角与法向应力的相关度,首先对中砂、水泥、硅粉、非引气型萘系减水剂等原材料的配比进行研究,获得与天然钙质板岩物理力学特性相类似的岩石模型材料,然后采用研发的结构面制作模具及其制备工艺制作10组具有不同表面起伏度和粗糙度的结构面,并利用自制的高精度岩石结构面直剪仪对系列法向应力下的结构面摩擦角进行直剪试验研究和数据统计分析,结果表明:结构面峰值摩擦角及其变化率均随法向应力的增加而降低,而不是通常认为的峰值摩擦角为定值;结构面残余摩擦角随法向应力的变化并不是很明显;具有不同起伏程度和粗糙度系数的模型结构面在相同法向应力下的峰值摩擦角也有差异;结构面峰值摩擦角应力效应和JRC-JCS (JRC为粗糙度系数,JCS为壁岩强度)准则中所确定的峰值摩擦角变化规律相一致,而且粗糙度系数越大结构面峰值摩擦角的应力效应越明显。  相似文献   

14.
岩石节理剪切过程中应力与渗流特性的数值模拟   总被引:6,自引:0,他引:6  
 岩石节理剪切过程中应力与渗流特性受节理法向条件的影响很大。在岩石节理表面形状三维数值化表达的基础上,首先建立岩石节理剪切过程中力学与渗流的计算模型;接着,应用GIS技术,模拟分析不同法向条件(固定应力、固定刚度)下节理的剪切过程,获得节理剪切过程中应力与渗流特性的变化规律。结果表明,法向应力、裂隙张开度、渗透系数均随着剪切位移的增加而逐渐增加,整个剪切过程渗透系数增加了两个量级左右;而剪应力的变化却受法向条件的影响,剪应力在出现峰值后快速下降,而后固定应力条件下剪应力很快趋于一个稳定的值,而固定刚度条件下剪应力却又缓慢上升。  相似文献   

15.
采用双向循环恒刚度剪切试验对预制桩的侧阻退化效应进行试验研究。研究显示,剪切应力(摩阻力)随剪切循环数的增加呈指数型衰减,衰减主要发生在开始的部分循环内,约 25 个循环后基本达到稳定。剪切过程中剪切带发生明显的剪缩,导致法向应力释放,此为摩阻力退化的 原因之一 。随剪切循环数的增加界面摩擦角发生指数型退化直至达到残余值,此为摩阻力退化的另一原因。法向刚度的大小决定剪切应力、法向应力和界面摩擦角衰减的速度和幅度,法向刚度越大,衰减越快且残余值越小。恒刚度剪切试验说明桩土界面摩擦力的退化与桩周土的坚硬程度密切相关,土体越硬则侧阻退化现象越明显。  相似文献   

16.
The authors have conducted an investigation into the behaviour of rock joints subjected to direct shear. Both concrete/rock and rock/rock joints were investigated. The behaviour of rock/rock joints is important for the assessment of stability issues involving rock masses (e.g. rock slope stability). Concrete/rock joints are vital to the assessment of performance of concrete piles socketed into rock, rock anchors and concrete dam foundations.This investigation included an extensive series of direct shear tests under a range of stress boundary conditions. The rock used for the tests was a soft artificial siltstone, called Johnstone. The results from the tests on concrete/Johnstone joints have been presented in Seidel and Haberfield (Geotech. Testing J. (2002), accepted for publication) and on Johnstone/Johnstone joints in Fleuter (MEngSc Dissertation, Department of Civil Engineering, Monash University, Australia, 1997) and Pearce (Ph.D. dissertation, Department of Civil Engineering, Monash University, Australia, 2001, in preparation). This paper describes the theoretical models developed to simulate the observed behaviour, including asperity sliding, asperity shearing, post-peak behaviour, asperity deformation and distribution of stresses on the interface. These models have been combined into a micro-mechanical simulation of joint shear. Comparisons between program predictions and measured performance are presented and discussed.  相似文献   

17.
 采用满足正态分布的随机函数,构造岩石节理剖面的形貌,为研究受剪岩石节理的细观剪切特性和宏观剪胀效应提供研究基础。利用UDEC软件,基于CY微段节理模型,开发随机形貌岩石节理直剪特性的数值分析程序,采用CY微段节理模型的细观剪切力学参数,探讨微段节理的细观剪切特性和岩石节理的宏观剪切响应,提出节理抗剪强度参数与节理面粗糙度系数JRC之间的拟合关系。得到如下结论:JRC越大,岩石节理的宏观剪切峰值强度和剪胀角随之增大,而峰值剪切位移与JRC成反变化关系;随着法向应力的增加,节理的剪胀效应逐渐减弱;这些数值结论得到模型实验的充分验证。微段节理的细观切向爬坡和剪胀效应是岩石节理产生宏观剪胀的细观力学机制。通过对随机形貌岩石节理的宏观剪胀数值曲线性态进行分析,提出能考虑节理粗糙度JRC和法向应力影响的非线性剪胀本构模型,该模型较好描述了受剪岩石节理的剪缩段和剪胀段。  相似文献   

18.
Sand–concrete interface direct shear tests were used to investigate the effects of surface roughness, surface waviness, mean sand diameter and relative density on interface strength and behavior under different confinement conditions. Extreme concrete surface textures, including smooth, rough and rough–wavy textures, were reproduced. Surface plowing was assessed via image analysis, laser scanning and extended multifocal micrographs. The experimental results showed that smooth concrete surfaces exhibited high values of interfacial–to–internal friction angle ratios, ranging 88–90%, due to the angular shape of sand particles. The rough concrete surfaces generated higher interface strength than smooth concrete surfaces; however, the interface strength was still inferior to the surrounding sand strength. Surface plowing, which identified a mixed shear plane at the sand–concrete interface, was developed as particles were detached from the surface, thus inhibiting the interface friction angle from reaching the sand friction angle. Higher sand–concrete interface strength was achieved as surface waviness increased, and interface friction angles greater than the surrounding sand friction angle were reached. Under a constant normal stiffness condition, significantly high interface strength is achieved due to the increase of the current normal stress, which was directly influenced by the initial normal stress, stiffness, surface roughness, mean sand diameter and relative density; surface waviness did not have a marked effect on the normal stress variation. Based on these results, multiple regressions were proposed to estimate the sand–concrete interface strength by the interfacial–to–internal friction angle ratio and the effect of the constant normal stiffness condition.  相似文献   

19.
岩石节理直剪试验颗粒流宏细观分析   总被引:4,自引:2,他引:2  
 基于颗粒流理论和PFC程序,在解决建模过程中悬浮颗粒的消除、恒定法向荷载伺服机制的施加、拟静力加载状态的选取等问题后,较为完善地实现岩石节理PFC数值直剪试验,并分别从宏观和细观角度深入探讨节理在直剪试验过程中的力学演化特征和破坏机制。结合已有的节理直剪试验成果,进行室内试验和计算结果的对比分析,验证计算方法的可靠性。研究成果如下:(1) 随恒定法向荷载的增大,剪切应力及其峰值时刻的剪切位移增大,节理面上黏结破坏颗粒增多,而剪切阻抗和节理剪胀效应却降低;(2) 随剪切位移的增加,节理面上粒间法向接触数不断减少,接触矢量方向逐渐向剪切荷载施加方向偏转,而粒间接触压力不断增大,裂纹不断沿节理面附近产生,破裂频数在剪切应力达到峰值时最为强烈;(3) 数值试验得到的剪切阻抗值普遍高于试验值,但减小模型颗粒半径可有效降低计算剪切阻抗值。室内试验和计算结果对比分析表明,新提出的颗粒流计算方法非常适用于岩石节理直剪试验的数值模拟,可为室内节理直剪试验和PFC节理模型细观力学参数选取的深入研究提供有益的参考。  相似文献   

20.
取决于材料状态的变形局部化现象   总被引:11,自引:2,他引:11  
一种状态相关本构模型被置于耦合的有限元程序中,分析了平面应变条件下饱和砂土在排水剪切过程中的变形局部化问题。由于模型中固有的状态相关特性,初始有效平均正应力与土样密度对变形局部化的影响得到了详细研究。数值分析结果表明,砂土中的变形局部化取决于土样的状态,有效平均正应力越小,土样密度越大,变形局部化程度就越高,剪切带与大主应力面的夹角也就越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号