首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The objective of this paper is to devise a way to facilitate the use of fixed air monitors data in order to assess population exposure. A weighting scheme that uses the data from different monitoring sites and takes into account the time-activity patterns of the study population is proposed. PM2.5 personal monitoring data were obtained within the European EXPOLIS study, in Grenoble, France (40 adult non-smoking volunteers, winter 1997). Volunteers carried PM2.5 personal monitors during 48 h and filled in time-activity diaries. Workplaces and places of residence were classified into two categories using a Geographic Information System (GIS): some volunteers' life environments are seen as best represented by PM10 ambient air monitors located in urban background sites; others by monitors situated close to high traffic density sites (proximity sites). Measurements from the Grenoble fixed monitoring network using a TEOM PM10 sampler were available across the same period for these two types of sites (PM10block and PM10prox). These data were used to compute a translator parameter deltai that forces the measured PM2.5 personal exposures (PM2.5persoi) to equate the average PM10 urban ambient air concentrations ([PM10back + PM10prox]/2) measured the same days. Average deltai was 4.2 microg/m3 (CI95%[-3.4; 11.9]), with true average PM2.5 personal exposure being 36.2 microg/m3 (28.2; 44.1). PM10 ambient levels at the proximity site and at the background site were respectively PM10prox = 43.8 microg/m3 (37.1; 50.6) and PM10back = 37.0 microg/m3 (31.8; 42.3). In order to assess the consistency of this approach, six scenarios of 'proximity' and 'background' environments were accommodated, according to traffic intensity and road distance. Deltai was estimated for the entire EXPOLIS population and for subgroups, using terciles based on the percentage of time spent in proximity by each subject. Other similar studies need to be conducted in different urban settings, and with other pollutants, in order to assess the generalizability of this simple approach to estimate population exposures from air quality surveillance data.  相似文献   

2.
There is increasing concern that airborne particles are critical risk factors for adverse health conditions in susceptible populations. The objective of this panel study is to investigate an association between particulate matter and the peak expiratory flow rate (PEFR) in the elderly and to compare estimated risks using PM10 or PM2.5 levels as a measure of exposure. During a 2-year longitudinal follow-up study, we contacted subjects living in an asylum for the elderly, provided them with a mini-Wright peak flow meter, and instructed to record all the flow readings, any respiratory symptoms, passive smoking activity, and hours spent outdoors for that given day. Daily levels of particulate matter were measured by two separate mini-volume air samplers (for PM10 and PM2.5) placed on the rooftop of the two-story residence asylum building. In our statistical models, we assumed that the expected response varied linearly for each participant with a slope and intercept that depended on fixed or time-varying covariates using a mixed linear model. The daily mean levels of PM10 and PM2.5 were 78 microg/m3 and 56 microg/m3, respectively. For every 10 microg/m3 increase in PM10 and PM2.5 levels, there was an estimated PEFR change of -0.39 l/min (95% CI, -0.63, -0.14) and -0.54 l/min (95% CI, -0.89, -0.19), respectively. These data also suggest that fine particles have a more adverse respiratory health impact for sensitive individuals such as the elderly and that more research and control strategies should focus on the smaller particles associated with air pollution.  相似文献   

3.
The impact of an improved wood burning stove (Patsari) in reducing personal exposures and indoor concentrations of particulate matter (PM(2.5)) and carbon monoxide (CO) was evaluated in 60 homes in a rural community of Michoacan, Mexico. Average PM(2.5) 24-h personal exposure was 0.29 mg/m(3) and mean 48-h kitchen concentration was 1.269 mg/m(3) for participating women using the traditional open fire (fogon). If these concentrations are typical of rural conditions in Mexico, a large fraction of the population is chronically exposed to levels of pollution far higher than ambient concentrations found by the Mexican government to be harmful to human health. Installation of an improved Patsari stove in these homes resulted in 74% reduction in median 48-h PM(2.5) concentrations in kitchens and 35% reduction in median 24-h PM(2.5) personal exposures. Corresponding reductions in CO were 77% and 78% for median 48-h kitchen concentrations and median 24-h personal exposures, respectively. The relationship between reductions in median kitchen concentrations and reductions in median personal exposures not only changed for different pollutants, but also differed between traditional and improved stove type, and by stove adoption category. If these reductions are typical, significant bias in the relationship between reductions in particle concentrations and reductions in health impacts may result, if reductions in kitchen concentrations are used as a proxy for personal exposure reductions when evaluating stove interventions. In addition, personal exposure reductions for CO may not reflect similar reductions for PM(2.5). This implies that PM(2.5) personal exposure measurements should be collected or indoor measurements should be combined with better time-activity estimates, which would more accurately reflect the contributions of indoor concentrations to personal exposures. PRACTICAL IMPLICATIONS: Installation of improved cookstoves may result in significant reductions in indoor concentrations of carbon monoxide and fine particulate matter (PM(2.5)), with concurrent but lower reductions in personal exposures. Significant errors may result if reductions in kitchen concentrations are used as a proxy for personal exposure reductions when evaluating stove interventions in epidemiological investigations. Similarly, time microenvironment activity models in these rural homes do not provide robust estimates of individual exposures due to the large spatial heterogeneity in pollutant concentrations and the lack of resolution of time activity diaries to capture movement through these microenvironments.  相似文献   

4.
Several studies among adult populations showed that an array of outdoor and indoor sources of particles emissions contributed to personal exposures to atmospheric particles, with tobacco smoke playing a prominent role (J. Expo. Anal. Environ. Epidemiol. 6 (1996) 57, Environ. Int. 24 (1998) 405, Arch. Environ. Health 54 (1999) 95). The Vesta study was carried out to assess the role of exposure to traffic emissions in the development of childhood asthma. In this paper, we present data on 68 children aged 8-14 years, living in the metropolitan areas of Paris (n = 30), Grenoble (n = 15) and Toulouse (n = 23), France, who continuously carried, over 48 h, a rucksack that contained an active PM2.5 sampler. Data about home indoor sources were collected by questionnaires. In parallel, daily concentrations of PM10 in ambient air were monitored by local air quality networks. The contribution of indoor and outdoor factors to personal exposures was assessed using multiple linear regression models. Average personal exposure across all children was 23.7 microg/m3 (S.D. = 19.0 microg/m3), with local means ranging from 18.2 to 29.4 microg/m3. The final model explains 36% of the total between-subjects variance, with environmental tobacco smoke contributing for more than a third to this variability; presence of pets at home, proximity of the home to urban traffic emissions, and concomitant PM10 ambient air concentrations were the other main determinants of personal exposure.  相似文献   

5.
This study compared commuters' exposures to particulate matter (PM) while using motorcycles, cars, buses, and the mass rapid transit (MRT) on the same routes in Taipei, Taiwan. Motorcycle commuters who had the shortest travel time (28.4+/-4.2 min) were exposed to the highest concentrations of PM(10) (112.8+/-38.3 microg/m(3)), PM(2.5) (67.5+/-31.3 microg/m(3)), and PM(1.0) (48.4+/-24.7 microg/m(3)) among four commuting modes. By contrast, car commuters were exposed to the lowest PM concentrations and had the second shortest travel time among them. Motorcycle commuters' high trip-averaged PM concentrations and bus commuters' long commuting time (43.1+/-5.1 min) resulted in their high whole-trip PM exposures. Size fractions of PM were relatively consistent across PM exposures of the four commuting modes with fine particles (PM(2.5)) contributing to 53-60% of PM(10) and submicron particle (PM(1)) contributing to 39-43% of PM(10). Motorcycles idled at traffic lights and bus doors opened at stops increased commuters' PM exposures. Fixed-site monitoring data explained well the variation of whole-trip PM(10) exposure of car (r(2)=0.63) and MRT (r(2)=0.52) commuters, and of whole-trip PM(2.5) exposure of car (r(2)=0.76), MRT (r(2)=0.73) and motorcycle (r(2)=0.64) commuters in regression analyses. The coefficients (slopes) of regression between fixed-site monitoring data and PM(2.5) exposures were less than 1 for car and MRT commuters but greater than 1 for motorcycle commuters. In conclusion, proximity to traffic emissions contributes to a person's high PM exposure during his or her daily commute. This proximity occurs when people use motorcycles on roads and when bus/MRT commuters walk or wait along commuting routes. Fixed-site air monitoring data can under-estimate motorcycle commuters' PM(2.5) exposures but over-estimate car and MRT commuters' PM(2.5) exposures.  相似文献   

6.
Indoor air pollution (IAP) from biomass fuels contains high concentrations of health damaging pollutants and is associated with an increased risk of childhood pneumonia. We aimed to design an exposure measurement component for a matched case-control study of IAP as a risk factor for pneumonia and severe pneumonia in infants and children in The Gambia. We conducted co-located simultaneous area measurement of carbon monoxide (CO) and particles with aerodynamic diameter <2.5 microm (PM(2.5)) in 13 households for 48 h each. CO was measured using a passive integrated monitor and PM(2.5) using a continuous monitor. In three of the 13 households, we also measured continuous PM(2.5) concentration for 2 weeks in the cooking, sleeping, and playing areas. We used gravimetric PM(2.5) samples as the reference to correct the continuous PM(2.5) for instrument measurement error. Forty-eight hour CO and PM(2.5) concentrations in the cooking area had a correlation coefficient of 0.80. Average 48-h CO and PM(2.5) concentrations in the cooking area were 3.8 +/- 3.9 ppm and 361 +/- 312 microg/m3, respectively. The average 48-h CO exposure was 1.5 +/- 1.6 ppm for children and 2.4 +/- 1.9 ppm for mothers. PM(2.5) exposure was an estimated 219 microg/m3 for children and 275 microg/m3 for their mothers. The continuous PM(2.5) concentration had peaks in all households representing the morning, midday, and evening cooking periods, with the largest peak corresponding to midday. The results are used to provide specific recommendations for measuring the exposure of infants and children in an epidemiological study. PRACTICAL IMPLICATIONS: Measuring personal particulate matter (PM) exposure of young children in epidemiological studies is hindered by the absence of small personal monitors. Simultaneous measurement of PM and carbon monoxide suggests that a combination of methods may be needed for measuring children's PM exposure in areas where household biomass combustion is the primary source of indoor air pollution. Children's PM exposure in biomass burning homes in The Gambia is substantially higher than concentrations in the world's most polluted cities.  相似文献   

7.
An exposure study of children (aged 10-12 years) living in Santiago, Chile, was conducted. Personal, indoor and outdoor fine and inhalable particulate matter (< 2.5 .m in diameter, PM2.5 and < 10 microm in diameter, PM10, respectively), and nitrogen dioxide (NO2) were measured during pilot (N = 8) and main (N = 20) studies, which were conducted during the winters of 1998 and 1999, respectively. For the main study, personal, indoor and outdoor 24-h samples were collected for five consecutive days. Similar mean personal, indoor and outdoor PM2.5 concentrations (69.5, 68.5 and 68.1 microg/m3, respectively) were found. However, for coarse particles (calculated as the difference between measured PM10 and PM2.5, PM2.5-10), indoor and outdoor levels (35.4 and 47.4 microg/m3) were lower than their corresponding personal exposures (76.3 microg/m3). Indoor and outdoor NO2 concentrations were comparable (35.8 and 36.9 ppb) and higher than personal exposures (25.9 ppb). Very low ambient indoor and personal O3 levels were found, which were mostly below the method's limit of detection (LOD). Outdoor particles contributed significantly to indoor concentrations, with effective penetration efficiencies of 0.61 and 0.30 for PM2.5 and PM2.5-10, respectively. Personal exposures were strongly associated with indoor and outdoor concentrations for PM2.5, but weakly associated for PM2.5-10. For NO2, weak associations were obtained for indoor-outdoor and personal-outdoor relationships. This is probably a result of the presence of gas cooking stoves in all the homes. Median I/O, P/I and P/O ratios for PM2.5 were close to unity, and for NO2 they ranged between 0.64 and 0.95. These ratios were probably due to high ambient PM2.5 and NO2 levels in Santiago, which diminished the relative contribution of indoor sources and subjects' activities to indoor and personal PM2.5 and NO2 levels.  相似文献   

8.
Personal exposures of 100 adult non-smokers living in the UK, as well as home and workplace microenvironment concentrations of 15 volatile organic compounds were investigated. The strength of the association between personal exposure and indoor home and workplace concentrations as well as with central site ambient air concentrations in medium to low pollution areas was assessed. Home microenvironment concentrations were strongly associated with personal exposures indicating that the home is the driving factor determining personal exposures to VOCs, explaining between 11 and 75% of the total variability. Workplace and central site ambient concentrations were less correlated with the corresponding personal concentrations, explaining up to 11-22% of the variability only at the low exposure end of the concentration range (e.g. benzene concentrations < 2.5 μg m−3). One of the reasons for the discrepancies between personal exposures and central site data was that the latter does not account for exposure due to personal activities (e.g. commuting, painting). A moderate effect of season on the strength of the association between personal exposure and ambient concentrations was found. This needs to be taken into account when using fixed site measurements to infer exposures.  相似文献   

9.
Sub-Saharan Africa has the highest rate of urban population growth in the world, with a large number of urban residents living in low-income "slum" neighborhoods. We conducted a study for an initial assessment of the levels and spatial and/or temporal patterns of multiple pollutants in the ambient air in two low-income neighborhoods in Accra, Ghana. Over a 3-week period we measured (i) 24-hour integrated PM(10) and PM(2.5) mass at four roof-top fixed sites, also used for particle speciation; (ii) continuous PM(10) and PM(2.5) at one fixed site; and (iii) 96-hour integrated concentration of sulfur dioxide (SO(2)) and nitrogen dioxide (NO(2)) at 30 fixed sites. We also conducted seven consecutive days of mobile monitoring of PM(10) and PM(2.5) mass and submicron particle count. PM(10) ranged from 57.9 to 93.6 microg/m(3) at the four sites, with a weighted average of 71.8 microg/m(3) and PM(2.5) from 22.3 to 40.2 microg/m(3), with an average of 27.4 microg/m(3). PM(2.5)/PM(10) ratio at the four fixed sites ranged from 0.33 to 0.43. Elemental carbon (EC) was 10-11% of PM(2.5) mass at all four measurement sites; organic matter (OM) formed slightly less than 50% of PM(2.5) mass. Cl, K, and S had the largest elemental contributions to PM(2.5) mass, and Cl, Si, Ca, Fe, and Al to coarse particles. SO(2) and NO(2) concentrations were almost universally lower than the US-EPA National Ambient Air Quality Standards (NAAQS), with virtually no variation across sites. There is evidence for the contributions from biomass and traffic sources, and from geological and marine non-combustion sources to particle pollution. The implications of the results for future urban air pollution monitoring and measurement in developing countries are discussed.  相似文献   

10.
Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, ‘site efficiency,’ was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. ‘Site efficiency’ varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号