首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Tree-ring C-H-O isotope variability and sampling   总被引:3,自引:0,他引:3  
  相似文献   

2.
This study presents new evidence that radiocarbon, combined with dendrochronological and stable isotopes analysis in tree rings and needles, can help to better understand the influence of pollution on trees. Pinus pinea individuals, adjacent to main roads in the urban area of Caserta (South Italy) and exposed to large amounts of traffic exhaust since 1980, were sampled and the time-related trend in the growth residuals was estimated. We found a consistent decrease in the ring width starting from 1980, with a slight increase in δ13C value, which was considered to be a consequence of environmental stress. No clear pattern was identified in δ15N, while an increasing effect of the fossil fuel dilution on the atmospheric bomb-enriched 14C background was detected in tree rings, possibly as a consequence of the increase in traffic exhausts. Our findings suggested that radiocarbon is a very sensitive tool to investigate small-scale (i.e. traffic exhaust at the level crossing) and large-scale (urban area pollution) induced disturbances.  相似文献   

3.
Sulphate neoformation is a major factor of degradation of stone monuments. Boron, sulphur and oxygen isotope signatures were investigated for five French historical monuments (Bourges, Chartres and Marseille cathedrals, Chenonceau castle, and Versailles garden statues) to investigate the role of intrinsic sulphate sources (gypsum plasters and mortars) in stone degradation, compared to the influence of extrinsic sources such as atmospheric pollution. Gypsum plasters and gypsum-containing mortars fall systematically in the δ34S and δ18O range of Paris Basin Eocene evaporites indicating the origin of the raw materials (so-called "Paris plaster"). Black crusts show the typical S and O isotope signatures observed elsewhere in Europe that can be attributed to atmospheric pollution, together with a marine component for Marseille. Boron isotopes for black crusts indicate coal combustion as principal boron source. Mortar isotope compositions discriminate three types, one similar to gypsum plasters, one strongly depleted in 34S, attributed to pyrite oxidation, and a third one close to atmospheric sulphates. The isotopic composition of sulphates and boron of most degraded building stones of the different monuments is well explained by the identified sulphate sources. In several cases (in particular for Chenonceau and Bourges, to some extent for Chartres), the impact of gypsum plaster as building and restoration material on the degradation of the stones in its vicinity was clearly demonstrated. The study illustrates the usefulness of multi-isotope studies to investigate stone degradation factors, as the combination of several isotope systematics increases the discriminatory power of isotope studies with respect to contaminant sources.  相似文献   

4.
15N and 18O isotope abundance analyses in nitrate (NO3) (expressed as δ15N-NO3 and δ18O-NO3 values respectively) have often been used in research to help identify NO3 sources in rural groundwater. However, questions have been raised over the limitations as overlaps in δ values may occur between N source types early in the leaching process. The aim of this study was to evaluate the utility of using stable isotopes for nitrate source tracking through the determination of δ15N-NO3 and δ18O-NO3 in the unsaturated zone from varying N source types (artificial fertiliser, dairy wastewater and cow slurry) and rates with contrasting isotopic compositions. Despite NO3 concentrations being often elevated, soil-water nitrate poorly mirrored the 15N content of applied N and therefore, δ15N-NO3 values were of limited assistance in clearly associating nitrate leaching with N inputs. Results suggest that the mineralisation and the nitrification of soil organic N, stimulated by previous and current intensive management, masked the cause of leaching from the isotopic prospective. δ18O-NO3 was of little use, as most values were close to or within the range expected for nitrification regardless of the treatment, which was attributed to the remineralisation of nitrate assimilated by bacteria (mineralisation-immobilisation turnover or MIT) or plants. Only in limited circumstances (low fertiliser application rate in tillage) could direct leaching of synthetic nitrate fertiliser be identified (δ15N-NO3 < 0‰ and δ18O-NO3 > 15‰). Nevertheless, some useful differences emerged between treatments. δ15N-NO3 values were lower where artificial fertiliser was applied compared with the unfertilised controls and organic waste treatments. Importantly, δ15N-NO3 and δ18O-NO3 variables were negatively correlated in the artificial fertiliser treatment (0.001 ≤ p ≤ 0.05, attributed to the varying proportion of fertiliser-derived and synthetic nitrate being leached) while positively correlated in the dairy wastewater plots (p ≤ 0.01, attributed to limited denitrification). These results suggest that it may be possible to distinguish some nitrate sources if analysing correlations between δ variables from the unsaturated zone. In grassland, the above correlations were related to N input rates, which partly controlled nitrate concentrations in the artificial fertiliser plots (high inputs translated into higher NO3 concentrations with an increasing proportion of fertiliser-derived and synthetic nitrate) and denitrification in the dairy wastewater plots (high inputs corresponded to more denitrification). As a consequence, nitrate source identification in grassland was more efficient at higher input rates due to differences in δ values widening between treatments.  相似文献   

5.
Hailuogou (HLG) River and Huangbengliu (HBL) Gulley are typical alpine glacial and nonglacial rivers in Mount Gongga China, respectively. To differentiate distinct hydrologic regimes of the two rivers, δ18O and δ2H were measured on 196 water samples collected almost monthly from May 2008 to December 2009. The results indicate that: (i) the measured isotopic data show that stream water is overall isotopically more enriched in 2H and 18O than ice‐snow meltwater but more depleted than precipitation and ground water; (ii) these data also suggest that stream flow is generally more dominated by ice‐snow meltwater in HLG River than in HBL Gulley; (iii) δ2H/δ18O relationship suggests that isotopic composition of precipitation is well preserved in stream flow, and evaporation is only minor in both HBL Gulley and HLG River; (iv) this study highlights that ice‐snow meltwater is a substantially important water source in alpine regions on south‐eastern edge of Tibetan Plateau.  相似文献   

6.
Nitrate (NO3) contamination of surface- and groundwater is an environmental problem in many regions of the world with intensive agriculture and high population densities. Knowledge of the sources of NO3 contamination in water is important for better management of water quality. Stable nitrogen (δ15N) and oxygen (δ18O) isotope data of NO3 have been frequently used to identify NO3 sources in water. This review summarizes typical δ15N- and δ18O-NO3 ranges of known NO3 sources, interprets constraints and future outlooks to quantify NO3 sources, and describes three analytical techniques (“ion-exchange method”, “bacterial denitrification method”, and “cadmium reduction method”) for δ15N- and δ18O-NO3 determination. Isotopic data can provide evidence for the presence of dominant NO3 sources. However, quantification, including uncertainty assessment, is lacking when multiple NO3 sources are present. Moreover, fractionation processes are often ignored, but may largely constrain the accuracy of NO3 source identification. These problems can be overcome if (1) NO3 isotopic data are combined with co-migrating discriminators of NO3 sources (e.g. 11B), which are not affected by transformation processes, (2) contributions of different NO3 sources can be quantified via linear mixing models (e.g. SIAR), and (3) precise, accurate and high throughput isotope analytical techniques become available.  相似文献   

7.
To evaluate metallurgical processing as a source of Zn and Cd isotopic fractionation and to potentially trace their distribution in the environment, high-precision MC-ICP-MS Zn, Cd and Pb isotope ratio measurements were made for samples from the integrated Zn-Pb smelting and refining complex in Trail, B.C., Canada. Significant fractionation of Zn and Cd isotopes during processing of ZnS and PbS ore concentrates is demonstrated by the total variation in δ66/64Zn and δ114/110Cd values of 0.42‰ and 1.04‰, respectively, among all smelter samples.No significant difference is observed between the isotopic compositions of the Zn ore concentrates (δ66/64Zn = 0.09 to 0.17‰; δ114/110Cd = − 0.13 to 0.18‰) and the roasting product, calcine (δ66/64Zn = 0.17‰; δ114/110Cd = 0.05‰), due to ∼ 100% recovery from roasting. The overall Zn recovery from metallurgical processing is ∼ 98%, thus the refined Zn metal (δ66/64Zn = 0.22‰) is not significantly fractionated relative to the starting materials despite significantly fractionated fume (δ66/64Zn = 0.43‰) and effluent (δ66/64Zn = 0.41 to 0.51‰). Calculated Cd recovery from metallurgical processing is 72-92%, with the majority of the unrecovered Cd lost during Pb operations (δ114/110Cd = − 0.38‰). The refined Cd metal is heavy (δ114/110Cd = 0.39 to 0.52‰) relative to the starting materials. In addition, significant fractionation of Cd isotopes is evidenced by the relatively light and heavy isotopic compositions of the fume (δ114/110Cd = − 0.52‰) and effluent (δ114/110Cd = 0.31 to 0.46‰). In contrast to Zn and Cd, Pb isotopes are homogenized by mixing during processing. The total variation observed in the Pb isotopic compositions of smelter samples is attributed to mixing of ore sources with different radiogenic signatures.  相似文献   

8.
The occurrence of ferrocyanide, Fe(CN)64−, in aqueous environments is of concern, since it is potentially hazardous. For tracing the source of ferrocyanide in contaminated water we developed a method that relies on the determination of the stable isotope ratios of 13C/12C and 15N/14N of this complexed cyanide (CN) after precipitating it as cupric ferrocyanide, Cu2[Fe(CN)6]·7H2O. The precipitate was combusted and the isotope ratios were determined by continuous flow isotope ratio mass spectrometry.At first, ferrocyanide enrichment from synthetic water containing cyanide with known isotopic composition was studied by using six commercial anion-exchange resins. Five resins revealed a quick and complete sorption of ferrocyanide. A nearly quantitative desorption was achieved using NaCl solutions of 5 and 10% by weight for four resins. Subsequent determination of the δ13CCN and δ15NCN values of the ferrocyanide revealed that no significant isotope fractionation occurred during this procedure. These results were reproduced even in column experiments using larger water volumes.Potential interferences were also addressed. Sulfate in excess competes for exchange sites but can be precipitated as BaSO4 prior to ferrocyanide enrichment. Non-cyanide carbon compounds may co-precipitate with cupric ferrocyanide, thus possibly modifying the isotope ratios. However, neither dissolved inorganic carbon nor highly soluble organic compounds did interfere with the method. Poorly soluble organics like BTEX and PAH can be eliminated by passing the samples through appropriate adsorber resins in a prior step.The proposed method is an excellent way of precise determination of the stable cyanide-carbon and cyanide-nitrogen isotope ratios in ferrocyanide-containing aqueous samples, which was successfully applied to four contaminated groundwater samples since measured aqueous isotopes ratios match those of corresponding cyanide-bearing solid wastes.  相似文献   

9.
The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood. One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of δ13C of dissolved inorganic carbon (DIC) and δ13C and δ15N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the δ13C and δ15N compositions of OM varied from − 21.7‰ to − 26.2‰ and from + 9.2‰ to − 0.1‰, respectively. δ13C from DIC ranges from + 0.04‰ to − 12.7‰. The difference in the isotope compositions enables the determination of three distinct end-members: terrestrial, marine and urban. Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of δ13CDIC and δ13CPOC it is possible to further understand the carbon dynamic within Babitonga Bay.  相似文献   

10.
Nitrate is naturally found within the environment as part of the nitrogen cycle. However, anthropogenic inputs have greatly increased nitrate loads within ground and surface waters. This has had a severe impact on aquatic ecosystems and has given rise to health considerations in humans and livestock. Therefore, the identification of nitrate sources is important in preserving water quality and achieving sustainability of our water resources. Nitrate sources can be determined based on the nitrate nitrogen (N) and oxygen (O) isotopic compositions (δ15N, δ18O). However, sewage and manure have overlapping δ15N and δ18O values making their differentiation on this basis problematic. The specific differentiation between sources of faecal contamination is of particular importance, because the risk to humans is usually considered higher from human faecal contamination (sewage) than from animal faecal contamination. This review summarises the current state of knowledge in using isotope tracers to differentiate various nitrate sources and identifies potential chemical tracers for differentiating sewage and manure. In particular, an in depth review of the current state of knowledge regarding the necessary considerations in using chemical markers, such as pharmaceuticals and food additives, to differentiate sewage and manure sources of nitrate contamination will be given, through an understanding of their use, occurrence and fate, in order to identify the most suitable potential chemical markers.  相似文献   

11.
The status of nitrate (NO3), nitrite (NO2) and ammonium (NH4+) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate δ15N and δ18O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields).The exponential increase in NO3-δ15N along with the NO3 reduction and clear δ18O/δ15N slopes of NO3 (∼ 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO3 contamination via active denitrification and reduced nitrification.Our results showed that NO3 and NH4+ contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings.  相似文献   

12.
Variations in isotopic ratios of water samples collected from three plants functioning on two different desalination processes were evaluated by comparing their measured δ18O, δ17O and the δ2H isotopic ratios before and after desalination using a system based on tunable off‐axis integrated‐cavity‐output diode laser spectroscopy (OA‐ICOS). The δ18O, δ17O and the δ2H isotopic ratio measurements for water samples collected before desalination are compared against their peers of desalinated water from two desalination plants on the Arabian Gulf that are operating under the Multistage Flash (MSF) process. Also, variations in the δ18O, δ17O and the δ2H isotopic ratio measurements due to desalination from a Reversal Osmosis (RO) facility in Dhahran, Saudi Arabia were also reported and compared against variations in isotopic composition of water desalinated in two MSF plants.  相似文献   

13.
Characteristics of aquatic fulvic acids (FAs) from 10 clear waters in Japan (around the temperate zone) were revealed by several analytical techniques—high performance size exclusion chromatography (HPSEC), elemental analysis, liquid-state 13C NMR spectroscopy, isotopic analyses (δ13C and δ15N), and compared with those of International Humic Substances Society (IHSS) standard samples including FAs from brown waters (Suwannee, Pony, and Nordic FAs). Generally clear-water FAs were different from brown-water FAs in chemical properties. Weight-average molecular weights (Mw) of the clear-water FAs were similar to each other, whereas their elemental compositions and carbon species distribution were different. The clear-water FAs all exhibited a high proportion of alkyl carbons, which may be attributed to microbial activity. δ13C and δ15N values of the FAs indicated that there would be a huge gap between origin and chemical structure of clear-water FA. Results of the chemical structural analyses described above were not always linked to those of the isotopic analyses (δ13C and δ15N). Multivariate statistical analysis, i.e. cluster and principal component analysis was applied to reveal differences or similarities in a more objective manner. The FAs were always classified into two clear-water groups and one brown-water group. Aryl-C and O-Alkyl-C contents were important for the grouping. We speculate that the grouping might depend on the differences of aquatic microbial activity caused by the differences of residence time of water.  相似文献   

14.
The influence of human activities on the flow system and contamination of groundwater were investigated in Seoul City, South Korea, one of the largest Asian cities, using a combination of isotopes (δD, T, δ15N, δ18O, δ34S, and 87Sr/86Sr). Eighteen representative groundwater and river water samples, which were collected over a wide area of the city, were compared with previously reported data. The distribution of stable isotopes (δD and δ18O) with groundwater potential data shows that recharged groundwater from either the surrounding mountainous area as well as the Han River and other surface streams discharged towards the northern-central part of the city, where a subway tunnel pumping station is located. It is suggested from T values (3.3 to 5.8 T.U.) that groundwater was recharged in the last 30 to 40 years. The δ34S and δ15N of SO42− and NO3 data were efficiently used as indicators of contamination by human activities. These isotopes clarified that the contribution of anthropogenic contaminants i.e., industrial and household effluents, waste landfills, and fertilizers, are responsible for the enrichment by SO42− (> 30 ppm as SO42−) and NO3 (> 20 ppm as NO3) of groundwater. The 87Sr/86Sr values of groundwater vary (0.71326 to 0.75058) in accordance with the host rocks of different origins. Mineral elements such as Ca are also suggested to be derived naturally from rocks. The groundwater under Seoul City is greatly affected by transportation of pollutants along the groundwater flow controlled by subway tunnel pumping, contributing to the degradation of water quality in urbanized areas.  相似文献   

15.
16.
Several recent studies have highlighted the importance of salmon as a means to deliver biomagnifying contaminants to nursery lakes. There is a lack of studies, however, which demonstrate empirically how this source has varied through time. This is of great significance because past salmon-derived contaminant loading was potentially greater than it is today. By analyzing radiometrically dated sediment cores collected from ten lakes in Alaska and British Columbia (B.C.), we relate historical numbers of sockeye salmon spawners to ΣPCB concentrations and δ15N values (a paleolimnological proxy for past salmon-derived nitrogen) in the sediments. The results confirm that sockeye salmon have provided an important route for PCBs to enter the lakes in the past, a finding that is especially evident when the data of all lakes are pooled. Significant relationships between sockeye salmon numbers and δ15N, as well as ΣPCB concentrations and δ15N in sediments, were also found. However, it is difficult to establish relationships between salmon numbers, ΣPCBs and δ15N in individual lakes. This may be due to a number of factors which may influence contaminant loadings to the lakes. The factors include: a) changing salmon contaminant loads over time resulting from a lag in the upper ocean reservoir and/or changing salmon feeding locations; b) greater importance of atmospheric transport in lakes with relatively low salmon returns; and c) increased PCB scavenging due to higher algae productivity in the lakes in recent years.  相似文献   

17.
The recent development of an oxygen isotope (δ18O) master chronology for south central England (1200–2000 AD) has successfully demonstrated reliable cross-dating between the master chronology and undated samples from vernacular and high-status buildings. The method is well suited to complacent, wide-ringed samples, which are commonplace throughout the UK historic buildings archive and often fail to date by ring-width dendrochronology, or remain unsampled. This paper outlines briefly the isotope dating technique, and describes the application of the method to a number of case studies where ring-width dendrochronology has been unable to provide a robust date. The close association between ring-width dating and stable isotope dendrochronology is explored and its wider potential considered.

Note: For illustrations of the buildings used in the case studies, see “Stable Isotope Tree-ring Dates: List 1,” Vernacular Architecture 50: 88–93.  相似文献   

18.
Sulfur source identification previously reported has been based on sulfur isotopic ratios in either rainwater or mosses. The δ34S values of rainwater sulfate and the epilithic moss Haplocladium microphyllum in Nanchang region (China) were determined for comparisons and used to delineate atmospheric sulfur sources. At the urban and rural sites, similar mean δ34S values were observed between rainwater sulfate (+ 1.6‰ and − 0.2‰, respectively) and epilithic mosses (+ 1.7‰ and + 0.6‰, respectively), suggesting that mosses acquire δ34S values similar to those found for rainwater sulfate. This has further demonstrated that moss δ34S signatures hold valuable source-specific information as rainwater δ34S values do. The δ34S values of both rainwater sulfate and epilithic mosses indicated that atmospheric sulfur in Nanchang region was mainly associated with coal combustion. The lower δ34S values at the rural site can be explained by higher contribution of local coals (lower δ34S values relative to those of north Chinese coals) and biogenic sulfur.  相似文献   

19.
High-precision oxygen isotope analyses were carried out on dissolved phosphate extracted from discharge waters from three wastewater treatment plants (WTP) located in western France, as well as on the different phosphate-based fertilizers applied by farmers in the same region. Measured delta(18)O values of phosphate from chemical fertilizers range from 19.6 to 23.1 per thousand, while those of phosphate from WTP discharge waters are more tightly grouped between 17.7 and 18.1 per thousand. The variability in delta(18)O values of phosphate fertilizers is attributed to oxygen isotope variations of the phosphorite deposits from which France's fertilizers are manufactured. The significance of the delta(18)O values of phosphate from WTP discharge waters is less straightforward. At present, it is not clear whether these values are primary isotopic compositions corresponding, e.g., to the oxygen isotope composition of phosphate builders included in detergents (delta(18)O(P)=17.9 per thousand), or represent secondary values reflecting biological recycling of the phosphate in equilibrium with ambient WTP water The restricted difference in isotopic composition obtained between phosphate from fertilizers and phosphate from WTP discharge waters (<2 per thousand), as well as the fairly large internal isotopic variability observed in both end-members (>/=1.5 per thousand), cast doubt about the possibility that the oxygen isotope composition could serve as a tracer for the source of anthropogenic phosphates in waters.  相似文献   

20.
The sources of sulfate in an aquifer system, and its formation/degradation via biogeochemical reactions, were investigated by determining sulfate isotope ratios (δ34SSO4 and δ18OSO4) in dissolved sulfate in groundwater from the Jakarta Basin. The groundwater flow paths, water ages, and geochemical features are well known from previous studies, providing a framework for the groundwater chemical and isotopic data, which is supplemented with data for spring water, river water, hot spring water, seawater, detergents, and fertilizers within the basin. The sulfate isotope composition of groundwater samples varied widely from − 2.9‰ to + 33.4‰ for δ34SSO4 and + 4.9‰ to + 17.8‰ for δ18OSO4 and changed systematically along its flow direction from the mountains north to the coastal area. The groundwater samples were classified into three groups showing (1) relatively low and narrow δ34SSO4 (+ 2.3‰ to + 7.6‰) with low and varied δ18OSO4 (+ 4.9‰ to + 12.9‰) compositions, (2) high and varied δ34SSO4 (+ 10.2‰ to + 33.4‰) with high δ18OSO4 (+ 12.4‰ to + 17.3‰) compositions, and (3) low δ34SSO4 (<+6.1‰) with high δ18OSO4 (up to + 17.8‰) compositions. These three types of groundwater were observed in the terrestrial unconfined aquifer, the coastal unconfined and confined aquifers, and the terrestrial confined aquifer, respectively. A combination of field measurements, concentrations, and previously determined δ15NNO3 data, showed that the observed isotopic heterogeneity was mainly the result of contributions of pollutants from domestic sewage in the rural area, mixing of seawater sulfate that had experienced previous bacterial sulfate reduction in the coastal area, and isotopic fractionation during the formation of sulfate through bacterial disproportionation of elemental sulfur. Our results clearly support the hypothesis that human impacts are important factors in understanding the sulfur cycle in present-day subsurface environments. A general model of sulfate isotopic evolution along with groundwater flow has rarely been proposed, due to the complicated hydrogeological research setting that causes varied isotope ratios, although its understanding has recently received great attention. This pioneer study on a simple volcanic fan aquifer system with a well-understood groundwater flow mechanism provides a useful model for future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号