首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
文章根据厦安高速公路罗溪连接线莲花隧道的工程地质条件,选择合理的隧道浅埋偏压段的地表注浆加固方案,解决了隧道浅埋偏压段的安全施工问题;并结合施工过程中的地表沉降监控量测分析注浆加固效果,实现了信息化施工,为今后类似工程的施工提供参考。  相似文献   

2.
结合深圳地铁4号线工程下穿梅拗八路浅埋暗挖隧道施工实例,探讨了大管棚超前注浆支护技术在城市地铁施工中的应用。地表下沉监测结果表明,最大沉降值在允许的沉降范围内,表明了大管棚超前注浆支护技术能有效地控制浅埋暗挖隧道施工中的地层变形。  相似文献   

3.
浅埋隧道下穿既有桥梁是隧道施工中的难点,易引起桥桩等部位沉降变形甚至倒塌破坏。为控制浅埋隧道下穿既有桥梁墩台的施工位移量,以玉磨铁路段勐养隧道下穿思小高速桥梁为例,采用MIDAS有限元软件对该段地表注浆加固、隧道内超前加强支护措施进行模拟分析,得出不同控制措施下地表及桥梁墩台的位移变形量,并与施工期间的变形监控量测数据进行对比。结果表明:针对浅埋矿山法施工的隧道,采取地表注浆加固且隧道内进行超前加强支护相结合的控制措施,地表及桥梁墩台位移最小,反之位移最大,且地表注浆加固对地表位移控制效果优于洞内加强措施;浅层地表注浆加固对隧道内位移影响不大。  相似文献   

4.
结合武汉地铁虎名区间隧道浅埋晴挖施工地表沉降过大原因进行分析,研究控制地表变形的有效方法,通过数值仿真和试验分析,研究采取地表注浆施工处理控制技术和效果,并提出系列管理措施,为控制浅埋暗挖施工地表变形提供借鉴.通过仿真分析和注浆试验,在软弱地质浅埋暗挖施工过程中,对于洞外对地质条件特别差或埋深特别浅的地段,采取超前小导管注浆和环形开挖留核心土法仍无法控制地面沉降的地段,采用注浆加固隧道上部软弱杂填土层,提高土体的抗渗性及黏结性,增强了围岩土体成拱效应,对控制沉降具有很好的效果,注浆段比未注浆段的地表沉降减少50% ~ 80%.  相似文献   

5.
《Planning》2015,(33)
结合深圳地铁7号线BT项目7302标安托山停车场出入线下穿北环大道段隧道暗挖实例,在浅埋淤泥地层及上覆大流量车辆荷载的条件下,提出采用了超前双层大管棚+超前小导管+超前帷幕注浆的超前预加固综合支护措施进行超前加固。不仅有效的控制了地表沉降量,而且还确保了上覆城市干道的行车安全与隧道开挖的施工安全,为相似工程支护结构设计与施工提供了借鉴。  相似文献   

6.
黄土公路隧道浅埋段管棚注浆支护机理及监测分析   总被引:2,自引:0,他引:2  
为了探讨管棚注浆法在黄土公路隧道浅埋段中的支护机理和实际应用效果,对某黄土公路隧道右线出口段进行了地表沉降、拱顶下沉和水平收敛等的施工监测;在对现场监测数据进行分析的基础上,得出黄土公路隧道洞口浅埋段在管棚支护作用下拱顶下沉、水平收敛、地表沉降等的变化规律。研究结果表明:管棚注浆法能够显著抑制浅埋黄土地层的变形和拱顶下沉,减少隧道初始支护结构的变形和受力,避免浅埋黄土地层开挖中塌方现象的产生,保证了施工安全,为进一步分析黄土地区管棚注浆法的支护机理提供了参考依据,同时也为今后西北地区黄土公路隧道管棚注浆法的设计和施工提供了优化数据。  相似文献   

7.
基于有限差分软件FLAC3D对北京市朝阳区光华路电力隧道上穿地铁10号线国贸站—金台夕照站区间工程进行了施工阶段计算分析,着重分析了浅埋暗挖法施工过程中采用地表深层注浆和超前小导管注浆组合加固措施时,上穿施工对地表沉降和既有隧道变形的影响。研究结果表明,新建电力隧道上穿施工过程中,地表发生沉降,下部既有隧道以上浮变形为主。采用组合地层加固措施后,地表和既有隧道产生的变形显著减小,满足设计规范要求;计算结果和现场实测数据吻合程度较好,说明设计的组合地层加固方案可以有效控制浅埋暗挖法隧道上穿施工过程中的地层沉降和既有隧道变形,对实际施工具有一定的参考意义。  相似文献   

8.
边苏成 《山西建筑》2007,33(9):327-328
结合工程实例,介绍了采用地表注浆与洞内超前小导管注浆联合加固地层的施工方案,并对其施工工艺进行了详细阐述,工程实践表明,该施工方案收到了较好的施工效果,从而保证了隧道施工顺利地通过浅埋段。  相似文献   

9.
针对采用洞桩法施工的北京地铁10号线工体北路站,介绍了浅埋大跨洞桩隧道的变形监测与控制措施。根据监测数据,对洞桩法隧道导洞开挖,主体扣拱的拱顶沉降与洞周收敛以及地表和上部立交桥基础的沉降变形规律进行了分析研究。结果表明:1)采用洞桩施工方法能有效控制浅埋大跨隧道地表沉降和地层变形;2)隧道埋深和跨度、导洞开挖对浅埋大跨洞桩隧道变形影响显著;3)设置超前小导管注浆,及时施作初期支护和二衬,可以有效的控制变形的发展。  相似文献   

10.
高伟  许英姿  宋风超 《山西建筑》2011,37(21):152-153
采用解析法研究穿越地表建筑物浅埋隧道开挖对地表沉降的影响,推导出了穿越地表建筑物浅埋隧道施工引起的地表沉降公式,依托广州地铁五号线右线区庄区间隧道穿越地表建筑物工程实例,验证了此方法的可行性,可为类似穿越已有建筑物隧道工程提供一定指导。  相似文献   

11.
地铁开挖过程中引起的地表沉降对周边建筑及道路有很大的影响,浅埋暗挖风道与主体交叉段的施工是工程中的重难点工序,为控制施工过程中地表沉降量,并对施工进行指导,做出以下研究:以长春地铁解放大路换乘工程为依托,采用FLAC-3D程序数值模拟的方法对CRD风道转入PBA工法车站主体进洞施工进行优化分析;通过对比双拱挑高进洞方案、加强环梁进洞方案与直接进洞方案在风道和主体开挖阶段地表沉降量,发现在风道开挖阶段,双拱挑高进洞方案沉降量较小,而主体开挖阶段,加强环梁进洞方案沉降量较小,得到如下结论:(1)双拱挑高进洞方案在风道开挖阶段对地表沉降控制较好;(2)加强环梁进洞方案在主体开挖阶段对地表沉降控制较好。  相似文献   

12.
  建等 《工程勘察》2014,(5):6-9
根据沈阳地铁中街站大跨度隧道洞桩法开挖施工过程中引起地表沉降变形的现场跟踪监测数据,分析得出隧道开挖过程影响地表沉降变形的特征和规律。结果表明:对地层土体扰动较大、明显影响地表沉降变形的步序分别是小导洞开挖和初衬扣拱施工阶段,约占最终沉降量的70%,而其他步序影响较小,因此控制小导洞开挖和初衬扣拱施工阶段的地表沉降是工程关键。分析还表明,施工前对拱顶上部地层及建筑物基础围岩进行注浆加固,可显著减小地表和建筑物的沉降变形。  相似文献   

13.
黄土隧道具有埋深浅、开挖时变形量大、稳定性差的问题,下穿既有建构筑物时,给地表建构筑物的安全带来巨大的影响,需保证开挖过程中变形在规范规定的范围内。针对黏质黄土地层高铁隧道开挖过程中的拱顶及地表变形规律进行分析,结合现场实测数据的分析,得出黏质黄土地层中隧道的沉降量与埋深及开挖方法有直接关系,相同的埋深下地表沉降与拱顶沉降有着显著的线性关系,其比值与施工方法的相关性不大。进一步得出了基于地表沉降控制要求的黏质黄土地层高铁隧道施工变形控制基准:Sv=[δ]/iH,可供类似工程进行变形控制提供依据。  相似文献   

14.
以某在建山岭隧道为工程背景,分析了洞口段初期支护产生过大变形的原因,采用有限元软件对其开挖施工过程进行了仿真分析,结合现场监测结果,得到了浅埋偏压隧道洞口段初期支护的受力及变形状况,并提出了变形控制措施。分析结果表明:洞口偏压段初期支护呈现明显的不对称弯曲变形;最大拉应力出现在深埋侧拱腰内边缘,最大压应力出现在深埋侧的拱脚外边缘和浅埋侧的拱腰内边缘;通过有序减压卸载、增设临时斜撑、洞内注浆、及时成环等措施可有效控制变形发展。研究结果可为类似地质地形条件下隧道洞口段初期支护的设计与施工提供参考。  相似文献   

15.
龚云  付恩喜 《山西建筑》2009,35(3):312-313
结合工程实例,针对地下铁道单洞双层隧道的特点,采用了浅埋暗挖法进行施工,通过工程实施和科研,研究了单洞双层隧道施工技术,并对几个施工难点作了论述,从而解决了单洞双层隧道施工中的一些问题。  相似文献   

16.
地铁重叠隧道上覆地层变形的数值模拟   总被引:18,自引:3,他引:18  
以在建的深圳地铁I期工程重叠隧道为例,采用FLAC3D非线性大变形程序对重叠隧道暗挖四步台阶法施工引起的地层三维变形规律进行了数值模拟研究。结合现场试验断面的实测数据对比分析,得到隧道开挖过程中开挖引起的地层变形和失水引起的地层变形量值,并区分一般地层和含水、含砂地层的环境控制标准,明确了深圳一般软土地层地表沉降最大值为60mm,含水、含砂地层地表沉降最大值为120mm。同时指出,对沉降控制要求较高的地段,可采用造价较高的地表垂直旋喷等辅助施工措施减小地层变形,这已在实际工程中取得了成功。研究结果对深圳地铁后期建设和同类地层地铁施工环境控制有借鉴和参考价值,对浅埋暗挖法在富水软土地层中的推广应用提供部分理论依据。  相似文献   

17.
收集中国已有地表沉降监测数据及土体损失率统计分析数据,结合长株潭城际高铁Ⅱ标树木岭盾构隧道进口树木林车站区间16个监测断面数据及其详细地层信息,分析土压平衡盾构隧道施工引起的地层损失规律影响因素。分析表明,土压平衡盾构隧道施工引起的土体损失率的累积概率较好的服从对数正态分布;土体损失率随着埋深或深径比的增大,呈现逐渐减小并趋于稳定的趋势,且两者关系可近似采用幂函数拟合;当H大于20m或H/D大于3.25时,土体损失率基本稳定在0.75%附近,且对应地层信息表明盾构隧道施工时其上覆岩层呈现拱效应,说明盾构隧道施工中其顶部土层成拱效应可较好的控制土体损失;土体损失率或名义土体损失率随着盾构开挖通过时间的增加而逐渐增大,且趋于稳定,说明固结变形对名义土体损失率的影响较大,最大可达瞬时沉降所引起土体损失率的4.58倍。  相似文献   

18.
盾构技术在砂卵石地层中应用越来越多,砂卵石地层具有很强的不确定性特征,盾构施工的关键问题之一是保持开挖面稳定性及减小地面沉降。利用土压平衡盾构模型,研究北京砂卵石地层中不同埋深时邻近建筑物影响下的开挖面稳定性及地表沉降规律。试验中,分析柔性基础邻近建筑物及埋深对开挖面极限支护力和地表沉降的影响,揭示开挖面稳定性、土拱效应与极限支护力及地表沉降的关系。在邻近建筑物影响下,砂卵石地层中的支护压力呈非对称分布,且砂卵石地层中盾构推进引起的沉降值大于基于Peck公式的计算值,研究成果对砂卵石地层中盾构施工有重要的指导意义。  相似文献   

19.
Ground surface settlement induced by urban subway construction using shallow tunnelling method is inevitable and it may cause a series of negative impact to existing nearby structures and utilities. In order to guarantee environmental safety, a risk management methodology which aims at process control for ground settlement and existing nearby structures is proposed. It includes 5-stage technology-based steps: survey of existing conditions, designing control standards for key risk factors, analyzing environmental response under tunnel construction and designing process control standards, monitoring and taking proper process control measures during construction, and risk reassessment after construction. This methodology was put into practice in the Huangzhuang subway station construction which is the largest cross interchange subway station construction using shallow tunnelling method in China. According to site survey, nearby pipelines and existing buildings were determined to be the key risk factors. The risk control standards for nearby pipelines and existing buildings were made according to available standards in China and related literatures. Design of process control standards for ground surface settlement was assisted by numerical simulation, which aimed at controlling the key risk factors. During construction, monitoring was adopted for the nearby pipelines, existing buildings and ground surface. After the four drifts excavation of the double-deck part of Line 4, a series of risk control measures, which included treatment of the unfavorable geological bodies, installation of roof pipes, compensation grouting, full-face grouting and some other control measures, were taken. Due to these risk control measures, ground surface settlements, except at two measuring points of Line 4, were successfully controlled under the given process control standards for both Line 4 and Line 10. All the pipelines and buildings were under their normal service state during tunnel construction. The maximum deflection for the 6 pipelines above the station was controlled to be within 2 mm/m and the maximum settlement of all the monitoring points for the pipelines was less than 30 mm. For the four important existing buildings in close vicinity, the maximum deflection was less than 1 mm/m; the maximum settlement value was 6.8 mm and the maximum uplift value was 3.0 mm. The risk control system was shown to be effective in ensuring environment safety, structure safety and construction safety. These safety control methods, the methodology of designing these control standards and the measures taken in the construction can serve as a practical reference for other similar projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号