首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 135 毫秒
1.
将废轮胎切碎后与乙烯-乙酸乙烯酯共聚物(EVA)及沸石按一定比例混合制成一种辅助媒介,并添加至A^2/O工艺的好氧段,考察了对脱氮效果的影响。试验结果表明,投加该媒介后可在好氧段内产生大量的微缺氧区,当维持污泥浓度为3~4g/L、DO为1.6~2.4mg/L以及进水C/N值为9~11、pH值为7.7~8.1的条件下,取得了较好的同步硝化反硝化效果,使脱氮能力提高了约13%。  相似文献   

2.
SBBR脱氮工艺研究   总被引:4,自引:0,他引:4  
对序批式生物膜法(SBBR)脱氮工艺进行了研究。结果表明:当进水COD_(Cr)为100~300mg/L,TN控制在40~65mg/L,温度在23~28℃,pH在6.5~7.5左右,好氧段DO为4.0~6.0mg/L,时,所得最佳水力停留时间为先好氧6h,后厌氧3h。运行一个周期,COD_(Cr)、TN去除率分别为90%、71%。其中好氧段TN去除率占TN损失的84.8%,好氧反硝化对整个周期的脱氮起着极其重要的作用,而厌氧段脱氮效率较低。DO控制在4.0~6.0mg/L,均可以获得一定的脱氮效果。DO= 5.5mg/L时,TN去除率达70%,脱氮效果最佳。碳氮比越大,脱氮效率越高。且随着进水有机物浓度的增加,TN去除率也相应升高。据此可推定好氧反硝化菌是一种异养型好氧菌。  相似文献   

3.
DO对A/O同步脱氮除磷工艺的影响研究   总被引:1,自引:0,他引:1  
采用A/O同步脱氮除磷工艺处理模拟城市污水,考察了好氧段DO浓度对该工艺处理效果的影响.结果表明,好氧段DO浓度对系统脱氮除磷效果的影响显著,当DO控制在1.5mg/L左右时,系统的处理效果最佳,可实现同步硝化反硝化和反硝化除磷,对NH4+-N、TN、TP、COD的去除率分别为99.12%、94.61%、92.85%、96.10%,平均出水NH4+-N、TN、TP、COD分别为0.25、0.68、0.5和10 mg/L.  相似文献   

4.
利用储碳活性污泥强化反硝化脱氮研究   总被引:2,自引:1,他引:1  
为提高脱氮效果,在SBR进水的缺氧操作结束后取出部分储碳污泥并加以保存,待好氧末返投储碳污泥作为碳源来强化缺氧反硝化反应.结果表明:对TN的去除率可达98%左右,远高于以缺氧/好氧方式运行的SBR;在好氧段的污泥浓度约为3 000 mg/L的情况下,选择缺氧搅拌段的污泥浓度为5 000 mg/L左右能使TN基本全部被去除.SBR经改造后,能有效实现取、返储碳污泥,提高了脱氮效果.  相似文献   

5.
借助SBR反应器,通过采用厌氧/好氧/缺氧(AOA)的运行方式来实现同步脱氮除磷.结果表明,在好氧段补充一定量的碳源可以抑制好氧吸磷,进而在缺氧段实现反硝化除磷,从而达到了同步脱氮除磷的目的.最佳碳源投量为30~40 mg/L,补充碳源负荷为12.8~17.2 mgCOD/gMLSS;长期运行时系统的脱氮除磷性能稳定,对TN和PO4^3- -P的平均去除率分别可达85.5%、91.4%,同时NO2^- -N可以作为反硝化聚磷菌吸磷的电子受体;在一个SBR周期内,pH值呈规律性变化并和氮、磷的吸收/释放相关联,通过监测pH值可以初步判断磷释放、氨氮转化和磷吸收的终点.  相似文献   

6.
污泥减量工艺:HA-A/A-MCO的好氧脱氮机制分析   总被引:2,自引:1,他引:1  
针对污泥减量技术存在对氮、磷去除能力低的问题,开发了一种具有强化脱氮除磷功能并可实现污泥减量化的HA-A/A-MCO工艺。在该工艺取得同步脱氮除磷和污泥减量优异效果的条件下,采用其处理校园生活污水,当进水TN平均为47 mg/L时,出水TN为10.9 mg/L,系统的总脱氮率为76.8%,其中好氧脱氮量占总脱氮量的50%,缺氧脱氮量占26%;HA-A/A-MCO系统存在着在好氧条件下具有反硝化能力的菌属,对好氧脱氮有一定贡献,且DO浓度对其反硝化能力没有抑制作用;好氧池中的DO浓度梯度有利于在污泥絮体内形成缺氧环境,从而促进同步硝化反硝化(SND)的发生,但减小污泥絮体尺寸会削弱絮体内部缺氧区域比例、降低SND的脱氮效率。  相似文献   

7.
研究了不同的曝气模式对序批式生物膜法脱氮效能的影响.结果表明,与连续低氧(DO=0.9-1.1 mg/L)曝气模式相比,连续好氧(DO=2.5-3.2 mg/L)曝气模式可加速挂膜过程;在序批式运行期间,连续低氧模式较好氧/低氧模式的脱氮效率更高;以脱氮效能为衡量标准,采用连续低氧曝气模式进行挂膜、运行操作,更能促进生物膜内好氧、缺氧分区结构的稳定,更易于实现同时硝化反硝化或短程反硝化过程,提高脱氮效率.  相似文献   

8.
为提高脱氮效果并实现利用内碳源进行反硝化,开展了SBBR(以好氧-缺氧方式运行)处理生活污水的脱氮研究.在好氧阶段,SBBR中的生物膜能创造缺氧微环境并吸收、储存碳,实现了同步硝化反硝化,降低了硝态氮的浓度;在缺氧阶段,可利用内碳源实现剩余硝态氮的反硝化.溶解氧浓度的大小对好氧时间、好氧剩余硝态氮浓度和缺氧反应时间有较大影响,因而可以利用在线检测的DO作为曝气量控制参数.DO、pH和ORP值的变化具有规律性,反映了生物脱氮过程中耗氧和供氧、产酸和产碱、氧化和还原过程的变化.为准确判断好氧和缺氧反应过程的终点,并减少控制的滞后时间,建议以pH值的"氨谷"和ORP的"硝酸盐膝"作为主控制特征点分别指示硝化和反硝化的终点,而以ORP的"氨肘"和pH值的"硝酸盐峰"作为参考或辅助控制特征点.  相似文献   

9.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

10.
DO浓度对SUFR系统同步硝化反硝化的影响   总被引:1,自引:1,他引:0  
采用螺旋升流式反应器(SUFR)处理生活污水,考察了好氧反应池中DO浓度对其同步硝化反硝化的影响。结果表明,在好氧反应池上部溶解氧浓度为3.0~3.5mg/L时,发生了明显的同步硝化反硝化现象,其对TN的去除量占SUFR系统对TN去除总量的16%左右;好氧反应池中的同步硝化反硝化反应只发生在池的下部,其中、上部只进行了好氧硝化反应;SUFR系统中好氧反应池上部的最佳溶解氧浓度范围为3.0~3.5mg/L,此时系统的硝化和反硝化效果最佳,好氧反应池中的脱氮效果也较好,系统对TN的去除率〉84%。  相似文献   

11.
低DO浓度下A/O型SBR工艺除污性能研究   总被引:1,自引:0,他引:1  
为了研究低DO浓度下对污染物的去除效果,采用SBR反应器,通过缺氧/好氧(A/O)的运行方式,考察了好氧段DO的平均值为1 mg/L时系统的除污效果,同时与好氧段DO平均值为2mg/L时系统的除污效果进行了对比.结果表明:在低DO浓度下,SBR工艺出水COD < 40mg/L,系统对COD的去除率在90%左右,对COD的去除效果略高于正常DO值条件下的;低DO浓度下,系统对氨氮的去除率在90%左右,对氨氮的去除效果低于正常DO值条件下的,但出水氛氮仍可保持在5 mg/L左右;系统的硝化反应速度较慢,反应结束时亚硝酸盐氮积累率为37%;NO--N生成速率与NH+-N氧化速率之比与DO浓度呈较好的线性关系;DO浓度对正磷酸盐的去除效果影响较小,系统对正磷酸盐的去除率>90%,出水正磷酸盐浓度<0.5mg/L;出水非常清澈,镜检可见丝状菌.  相似文献   

12.
溶解氧浓度对A~2/O工艺运行的影响   总被引:2,自引:0,他引:2  
以城市污水厂中最常采用的A2/O工艺为研究对象,开展了处理实际生活污水的研究,系统探讨了DO浓度对该工艺运行的影响。结果表明,当好氧区的DO平均浓度从4.0 mg/L降低至1.0 mg/L时,对COD的去除基本不受影响;而系统的硝化效果逐渐降低,但是低DO浓度引发的SND等作用,使得对TN的去除率反而逐渐升高。单纯从生物脱氮的角度考虑,A2/O工艺可以在DO为1.0~2.0 mg/L之间运行。不过低DO浓度运行对生物除磷效果的影响很大,在DO为1.0 mg/L时,除磷效率逐渐下降,这是由于供氧不足引发了生物除磷性能的恶性循环。另外,低DO浓度运行还引发系统中的污泥发生了微膨胀现象,在污泥微膨胀期间出水SS<5 mg/L。就总体的运行情况而言,不同于A/O等单纯脱氮工艺,A2/O工艺不宜在DO<2.0 mg/L的条件下运行,否则需要引入化学除磷。  相似文献   

13.
短好氧泥龄下A2/O和BAF联合工艺的脱氮除磷特性   总被引:2,自引:0,他引:2  
采用小试装置,研究了短好氧污泥龄下A2/O和BAF联合工艺处理低C/N和C/P污水时的脱氮除磷特性.结果表明,通过提高A2/O工艺段的厌氧区有机负荷和缺氧区硝酸盐负荷对反硝化聚磷菌(DPAOs)进行选择和强化后,其在聚磷菌(PAOs)中的比例维持在28%左右,工艺具有部分反硝化除磷能力,能够减少脱氮除磷过程中对碳源的总需求量.但在联合工艺中,好氧除磷仍是主要的除磷方式.在A2/O工艺段内,好氧污泥龄在满足好氧PAOs存活的同时,还必须满足抑制硝化细菌生长的要求,且为了保证工艺对磷的整体去除效果,混合液在好氧区的接触时间须大于30 min.此外,以保证缺氧区出水中含有1~4 mg/L的硝态氮为原则来控制BAF出水的回流量,可达到较好的脱氮除磷效果.该联合工艺结合了活性污泥工艺和生物膜工艺的优点,运行稳定,出水水质优良,不仅适合于新建污水处理厂,也特别适合于不能脱氮除磷污水处理厂的技术改造.  相似文献   

14.
针对武汉某污水处理厂因进水总氮浓度高、碳氮比值低而导致脱氮效果不稳定的问题,基于ASDM模型建立了该污水处理厂A/A/O工艺模型,并利用历史数据对脱氮效果进行了优化模拟。分别对硝化液回流比(0~600%)、好氧段DO(1~6 mg/L)、缺氧段DO(0.005~0.2 mg/L)、温度(16~29℃)等工艺运行参数进行了模拟分析,通过模型模拟筛选出的最优运行参数如下:硝化液回流比为100%,好氧段DO为1 mg/L,污泥回流比为65%,排泥量为550 m3/d,且缺氧段DO浓度越低越有利于脱氮。根据以上结论并结合该污水处理厂实际情况,确定如下优化实施方案:硝化液回流比为300%,好氧段DO为3 mg/L以下,同时关闭硝化液回流点前的曝气头以降低缺氧段DO,并按90kg/d投加碳源(以COD计)。该污水处理厂按照上述方案实际运行2个月,脱氮效果明显提高,出水总氮达标率达到100%。  相似文献   

15.
低溶解氧下微膨胀污泥对污染物的去除性能   总被引:3,自引:1,他引:2  
维持SBR反应器好氧段的平均DO为0.30 mg/L,采用好氧/缺氧的运行方式研究了微膨胀污泥在低溶解氧状态下去除污染物的效果.结果表明:在丝状菌污泥微膨胀状态下反应器的除污效果仍较好,出水SS含量很低,对COD、氨氮的去除率分别可达80%、90%以上,同时可以节省曝气量约25%.可见,在低溶解氧状态下采用微膨胀活性污泥处理生活污水是可行的.  相似文献   

16.
(AO)2-SBBR反硝化除磷工艺处理低碳城市污水   总被引:1,自引:0,他引:1  
低碳源浓度城市污水的脱氮除磷一直是个难题,为此在AO-SBBR工艺中引入一个缺氧段而形成(AO)2-SBBR工艺,研究了AO-SBBR和(AO)2-SBBR对低碳源浓度城市污水中氮、磷的去除效果。试验结果表明:在进水BOD5/TN=3、BOD5/TP=17的情况下,(AO)2-SB.BR工艺比AO-SBBR工艺具有更好的同步脱氮除磷效果,对总磷的去除率达到了79.8%,对总氮的去除率从25.83%提高到51.26%,出水水质达到了《城镇污水处理厂污染物排放标准》的一级标准。该工艺有效解决了低碳源浓度城市污水在同步脱氮除磷过程中有机物不足的问题,并在单一反应器中实现了反硝化除磷菌的增殖过程,反硝化除磷菌占聚磷菌的比例从14.82%增长到63.04%;反硝化除磷菌能够以低浓度的亚硝酸盐氮作为电子受体进行缺氧吸磷,如亚硝酸盐氮〉10mg/L则会抑制反硝化除磷菌的活性,而且这种抑制作用并不是瞬时的,至少要持续一段时间其活性才能恢复。  相似文献   

17.
A/O-MBR处理低浓度生活污水的试验研究   总被引:2,自引:1,他引:2  
针对传统活性污泥法处理低浓度生活污水难度大的问题,采用缺氧-好氧膜生物反应器(A/O-MBR)处理该类污水,并考察了其处理效果.结果表明,在污泥浓度为4 000~6 000mg/L、HRT为19.2 h、好氧段溶解氧浓度为1.5~2.5 mg/L、污泥回流比为200%~300%的条件下,A/O-MBR对COD和氨氮的去除效果良好,平均去除率分别为92.2%和95.9%.在无排泥的情况下,系统连续运行近100d,出水水质稳定.  相似文献   

18.
反硝化除磷菌可以在碳源不足的条件下,通过"一碳两用"的方式同时实现反硝化脱氮和吸磷过程,有研究表明,A2/O工艺中存在反硝化除磷现象.为此以啤酒废水为处理对象,研究了缺氧区与好氧区容积比对A2/O工艺反硝化除磷的影响.试验结果表明,在缺氧区与好氧区容积比分别为0.33、0.48、0.60的条件下,A2/O系统对总氮的平均去除率分别为68.04%、79.64%和85.70%,对总磷的平均去除率分别为85.38%、90.80%和96.84%,对COD的去除率均在90%以上.此外,如果继续增大缺氧区与好氧区容积比,应适当调整内循环比,否则会由于缺氧区硝酸盐浓度不够而发生二次释磷现象.  相似文献   

19.
处理低碳源污水的倒置A2/O工艺强化脱氮技术研究   总被引:5,自引:2,他引:3  
针对重庆鸡冠石污水处理厂的倒置A2/O工艺在低碳源情况下脱氮效果不佳的问题进行了生产性试验研究.在采取了投加垃圾渗滤液(投配率为0.1%)、缩短初沉池的水力停留时间为原来的1/3和控制好氧第3段的DO为0.5 mg/L等措施后,可补充碳源15%以上,系统中活性污泥性状良好,脱氮效果得到大幅提高.出水NH3-N为2 mg/L,对NH3-N的去除率为90%;出水TN为17 mg/L,对TN的去除率为54%,实现了出水达标排放.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号