首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
 针对大断面强采动综放煤巷开掘过程中出现的顶板非对称变形破坏现象,以王家岭煤矿为工程背景,通过现场调研、室内试验、理论分析、数值模拟和井下试验等手段,对变形破坏机制与控制对策进行研究。得出如下结论:(1) 综放煤巷顶板呈现非对称变形破坏特征,表现为煤柱侧顶板严重下沉、剧烈水平滑移变形及肩角部位顶板错位、嵌入、台阶下沉等;(2) 侧向基本顶于煤柱上方距采空区边缘6~7 m处发生破断,基本顶的破断和回转下沉运动引起的不均衡支承压力q和回转变形压力?是沿空巷道不对称变形破坏的根本力源,靠煤柱侧顶板及肩角部位是巷道变形破坏的关键部位;(3) 受采空区不稳定覆岩运动和巷道开挖影响,巷道围岩结构和应力分布以巷道中心线为轴呈非对称性分布,而原有支护未能对煤柱侧顶板及肩角等部位加强支护且无法适应顶板剧烈水平运动,巷道掘出后呈现出非对称矿压显现,后期受到本工作面回采影响,非对称变形破坏进一步加剧。(4) 分析该类巷道支护原理,提出集高强锚梁网、非对称锚梁桁架结构、预应力锚索桁架的非对称控制体系,阐述其控制机制,并进行方案设计和工程应用。数值模拟和工程实践表明,该技术可有效减弱顶板应力和位移分布的非对称性,控制围岩非对称变形破坏。  相似文献   

2.
以平煤集团香山矿戊9-0-22090大倾角煤层工作面为工程背景,通过室内光弹性模拟模型试验和工作面现场矿压实测,对大倾角煤层工作面开采后采场围岩矿压分布规律进行研究.光弹试验和现场实测结果表明:倾角对煤层工作面开挖后采场围岩应力分布、支承压力的分布有显著影响.大倾角煤层工作面开采后,采场顶板岩层的变形、破坏和运动形式不同于一般缓倾斜煤层工作面,采场支架载荷的分布、来压显现程度、来压步距沿采场倾斜方向均不同.工作面煤层开采后,采场顶板应力分布是高度不均匀、不对称的,在采空区两侧保护煤柱角高度集中,形成支承压力区,采空区上方形成支承卸压区.采场顶底板应力释放,两侧煤柱出现应力集中,采场四个角部位出现较大剪应力.剪切应变主要出现在采场下端部顶板和上端部的底板,而体积应变主要出现在煤层较近顶板和两侧煤柱.研究成果,对香山矿和类似条件下大倾角炮采煤层工作面的开采和顶板的支护的优化和管理具有一定的指导意义.  相似文献   

3.
浅埋近距离房式煤柱下长壁工作面回采将受到上煤层采空区遗留煤柱和本煤层工作面动压的共同影响。针对石圪台矿3–1–2煤层工作面顶板压力大、支架被压死等问题,采用理论分析、数值模拟及现场试验等方法,探讨采动应力演化规律及压架致灾机制。研究结果表明,与莫尔–库仑准则相比,应变软化准则能够准确地反映上层遗留房式煤柱在下层长壁工作面采动应力影响下的变形破坏机制;当上层遗留煤柱较完整,下煤层工作面位于煤柱下方时,受煤柱应力集中及采动影响,下煤层工作面顶板沿煤柱边缘直接切落,载荷集中造成支架压死。通过采前或回采过程中爆破上层遗留煤柱,将顶板压力转移到工作面前方煤岩体内,有效减小工作面围岩应力集中,保证下煤层工作面安全开采。  相似文献   

4.
 以镇城底矿为工程背景,通过理论分析、相似模拟、数值模拟和现场实测,研究了非充分采动采空区和煤岩柱(体)耦合作用机制。得出如下结论:(1) 不同的工作面布置产生不同的工作面构型、采空区形态和煤岩柱(体)形态,进而造成不同的耦合作用结果,采空区响应对实体煤岩柱(体)的应力及岩体破坏影响很大,数值模拟不可忽略采空区作用;(2) 推导出煤柱极限平衡区宽度表达式,分层开采单一分层时采高降低、大采高和错层位开采存在斜坡均导致煤柱极限平衡区宽度下降;(3) 垮落角对采空区和煤岩柱(体)耦合作用有重要影响,通过相似模拟确定了垮落角并用于数值模拟,得出非充分采动条件下工作面宽度L、最上部关键层跨度L1与垮落角θ之间的关系式;(4) 数值模拟显示非充分采动采空区承载增加,则支承压力相应降低,反之亦然,验证了非充分采动采空区和煤岩柱(体)的耦合作用,数值模拟若忽略采空区承载作用会造成支承压力偏大,应力集中区高度偏大,且位置降低,岩体破坏范围偏大;(5) 根据研究结果,现场将进风巷布置于采空区边缘下方,形成巷顶沿空巷道,该巷道处于整个回采系统应力最低区;而回风巷沿顶板布置,工作面两侧顺槽矿压问题均得到良好控制。  相似文献   

5.
为了研究承压水体上煤层开采后底板岩体的破断特征和突水危险性,基于弹性力学理论,分别构建周期来压时采场底板力学计算模型和隔水关键层稳定性分析模型,理论计算采后底板纵向破坏形态和横向突水危险区域;采用有限差分流–固耦合模拟方法验证承压水上开采底板损伤范围及渗流趋势;开展底板突水相似模拟试验揭示底板岩体破裂和渗流变化特征。研究表明:(1)理论计算采后底板沿着工作面走向和倾向分别呈"勺形"和"倒马鞍形"破坏形态,在采空区与煤体交界附近底板的破坏深度最大,与模拟得到的底板破坏范围大致相当。(2)底板隔水层的理论突水部位分别位于靠近工作面煤壁侧的区域A、煤壁后方采空区50m处的区域(B)及采空区倾向两边界区域(C),(D),但在靠近煤壁侧的区域(A)的中心位置的突水风险最高,这与试验观察到的"孔隙水主要经工作面煤壁斜下方底板渗透入采空区底部裂隙岩体"及模拟的"承压水沿采空区边界两侧的底板岩体涌入"等现象均较为吻合。(3)试验观察到在工作面和开切眼附近的浅部底板中剪切、竖向裂隙较发育,而采空区下方岩体出现层向裂隙,且最大损伤深度为12.8 m,略小于理论计算和数值模拟结果 13和15.875 m。研究结果揭示了采场底板易发突水部位及突水风险,可为矿井底板突水治理提供一定的理论依据和参考价值。  相似文献   

6.
为了研究承压水上开采沿工作面倾向底板应力分布规律和变形破坏特征,运用弹性力学理论,建立考虑沿工作面倾向支承压力分布和承压水共同作用的底板应力计算模型,结合初次和周期来压特点,理论推导计算底板应力分布和破坏形态,并利用FLAC3D数值模拟和原位测试技术进一步探讨开采后沿工作面倾向底板力学破坏特征和应力分布特点。研究表明:(1)理论计算采后底板呈"倒马鞍形"破坏形态,且剪切应力呈"反向对称螺旋状"分布,近似一对正负剪切力偶,易沿边界产生剪切滑移破坏,这与数值模拟得到的塑性区及应力分布特点相吻合;(2)应力集中程度最大值位于弹塑性交界附近,初次和周期来压支承压力系数之比与最大垂直应力集中系数比值近似相等;(3)模拟表明,开采后孔隙水沿底板递进导升,易从工作面端部斜下方涌入工作面,形成突水现象,与实际突水部位相吻合;(4)理论计算、数值模拟和现场实测底板最大破坏深度分别为12,12.875和13.75 m,三者结果大致相当。所构建力学模型计算结果与数值模拟所得有较好的一致性,更加符合现场实际破坏形态,其研究成果可为承压水上开采底板破坏机制提供一定的理论依据,对矿井防治水具有指导意义。  相似文献   

7.
为了研究分析上下煤层两侧都采空而形成的孤岛面沿空掘巷和煤层开采时围岩应力分布及变形破坏特征,应用理论分析、计算机数值模拟与具体工程实践相结合的研究方法,分析了上下煤层两侧采空情况下,下孤岛工作面迎上孤岛面沿空掘巷期间及煤层开采过程中,采场围岩应力分布、变形破坏规律。结果表明:该情况下孤岛工作面围岩结构特征因受多次开采影响,其整体性和联动性都有所降低,采场围岩应力分布特征有所不同,且煤柱宽度尺寸对巷道受力变形有较大影响。掘巷期间轨道巷煤柱帮的变形量大于实体煤帮变形量,顶板下沉量大于底鼓量;回采期间顶板运移特点决定了两巷围岩主要呈现拉剪破坏,随着工作面的推进,采动影响阶段和影响剧烈阶段范围逐渐增大,巷道断面收缩率随着距工作面距离的减小而增大。对于孤岛面开采沿空巷道的特殊围岩条件,应遵循“强顶、固帮、控底的全断面围岩控制技术思路,对上下隅角附近巷道加强支护,提高围岩自身强度,为类似条件孤岛面巷道维护及安全开采提供理论技术保障。  相似文献   

8.
采用综合研究方法分析了煤层回采后底板岩层应力场变化特征和空间分布规律,结果表明:工作面回采初期,煤壁前方及开切眼附近最大主应力近似等于垂直应力,似“球根”状向底板岩层传播,高剪应力斜向采空区两侧未采煤层底板传播,并迅速衰减,水平应力集中程度微弱;工作面继续回采,围岩最大主应力场急剧偏转,底板岩层存在高应力束组成的主应力拱,垂直应力峰值线是深入煤体斜向工作面底板岩层按负指数规律衰减的曲线,采场附近垂直应力等值线升高区呈“耳”型分布,工作面后方采空区底板岩层出现滞后卸压现象,垂直应力等值线最终趋于“平底型”分布,卸压范围呈现倒“八”字型;煤层底板应力场具有继承相关性,且煤层底板方向应力场衰减速率远大于煤层顶板岩层。附加水平应力和剪应力沿采空区边缘在浅部岩层出现高度集中现象,之后急剧耗散。力学场偏转伴生出的拉应力、膨胀应力、挤压应力联合作用是底板岩层运动(底臌)的本质力源,煤壁前方底板岩层存在微弱的扰动变形,底板岩层裂纹势必超前起裂。  相似文献   

9.
在急倾斜三软厚煤层走向长壁俯伪斜采煤条件下实施留小煤柱沿空护巷十分困难,煤柱稳定性和巷道围岩变形极难控制。针对这一难题,提出了包含煤柱小角度锚固法和十字护顶方法的留小煤柱沿空护巷技术,有效解决了煤柱易沿顶底板剪切破坏并向巷内搓动的问题,降低了巷道软弱围岩的破碎程度和变形量。现场试验结果显示,留设小煤柱的完整性保持较好,其中相较于原支护方式顶底板移近量减少了40%,两帮收敛量则减少了42%,巷道围岩变形得到了有效控制。与此同时,还得到工作面前后方回采巷道的矿压显现呈现明显的6个分区,分别为工作面前方无影响区、工作面前方矿压显现影响区、工作面前方矿压显现强烈区、工作面后方顶板激烈活动区、工作面后方顶板活动减缓区和工作面后方基本稳定区。其中,工作面前方矿压显现强烈区和工作面后方顶板活动激烈区的范围明显大于缓斜近水平煤层,这为分区制定围岩控制措施提供了有利依据。所得研究成果可为我国急倾斜走向长壁俯伪斜工作面沿空护巷技术研究提供一定的补充。  相似文献   

10.
 基于切顶短臂梁理论,分析无煤柱切顶自成巷技术原理,结合柠条塔矿施工经验,总结出“支、切、护、封”四步成巷工艺。通过建立联孔聚能爆破力学模型,分析无煤柱自成巷聚能爆破机制,得出联孔爆破损伤贯通判据条件,并结合试验巷道围岩特性,进行聚能切缝关键参数设计。综合运用理论分析、数值模拟及现场实测,对无煤柱自成巷切缝前后工作面和巷道矿压分布规律和演变机制进行系统研究。结果表明,由于切缝结构面切断巷道顶板与工作面顶板岩体间的应力传递路径,改变顶板岩层结构形态,工作面和巷道矿压分布发生明显变化。切缝对工作面矿压影响有一定范围,切缝影响区内周期来压强度有所减小,周期来压步距有所增大。切缝引起的充填结构的支撑作用是造成工作面顶板压力减小的直接原因,来压控制关键层上的有效荷载减小是导致来压步距增大的根本原因。受切缝影响,碎石帮顶板岩体将经历“垮落→压实→稳定”的演变过程,充分利用采空区碎胀矸石的自承载特性和巷道围岩的协同支撑作用,可有效减小支护强度,增强巷道稳定性。  相似文献   

11.
"两硬"条件下孤岛型短煤柱工作面所采煤层应力高度集中,顶板边界条件复杂,多次采动影响容易引起顶板扰动型围岩动力破坏。为提高该类采场围岩控制效果,采用现场实测、理论分析等研究方法分析坚硬顶板破断形态、工作面矿压显现形式及引发围岩动力破坏的原因。结果表明:孤岛型短煤柱工作面坚硬基本顶发生II类"O-X"破断,仅弧形三角岩板影响工作面矿压显现强度,来压时煤体承受载荷组合形式为高静载、低动载,工作面异常矿压现象以临空侧浅部煤体局部动力破坏为主,不会发生大范围、高危害程度的冲击地压灾害;高储能系数坚硬顶板动力破断引发的冲击载荷经未破碎坚硬顶煤有效传递至下位煤层、侧向顶板结构失稳及高推进速度造成的煤体水平应力快速卸载均可能引发短煤柱工作面煤体动力破坏;基于浅部煤体动力破坏发生机制提出孤岛型短煤柱工作面"坚硬顶煤注水预裂"+"增加割煤高度降低推进速度"+"提高超前支架额定阻力和扩大超前支护范围"的综合防治措施,可有效提高坚硬顶板控制效果,减少煤体动力破坏现象的发生。  相似文献   

12.
为了揭示浅埋房式采空区对下位煤层开采矿压显现的控制机制,降低工作面过房式采空区的动压显现强度和压架风险,以神东矿区霍洛湾煤矿2-2煤层房式采空区下3-1煤层长壁开采工作面动压特征为研究对象,将3-1煤层覆岩结构分为四类,利用理论分析和相似材料模拟等方法,系统研究了不同覆岩结构类型运动特征、力学模型及对3-1煤层长壁工作面的动压控制机制。结果表明:房式采空区稳定房柱下易形成上下位关键层双悬臂梁结构,双悬臂梁结构协同失稳是形成动载矿压的主要原因;房柱失稳区主关键层形成的不稳定砌体梁结构及靠近大煤柱未失稳的房柱随下位煤层开采滑落失稳是导致长壁工作面动载矿压发生的原因;当3-1煤层工作面上覆前方为房柱失稳区时,工作面推出集中煤柱时的动载矿压是由于大煤柱两侧关键块已提前滑落失稳,两关键块间无作用力,倒梯形岩柱与亚关键层联合失稳作用结果;当3-1煤层工作面上覆前方为房柱稳定区时,工作面推出集中煤柱时,动载矿压是由房柱失稳所致。  相似文献   

13.
为揭示采空区反倾斜坡变形破坏机理,针对采空区顶板层状岩体提出固定梁约束模型,并根据已有研究给出其基于结构力学和最大拉应力准则的弯曲折断应力判据。为验证约束模型的效果,以纳雍左家营崩塌为例,在详细地质调查的基础上,选取典型地质剖面1-1′剖面,对面积最大的1号采空区顶板每隔10 m取一个计算点,计算出固定梁约束模型下采空区顶板不同位置处的弯曲折断应力,同时利用FLAC3D对其进行数值模拟,最后综合结构力学计算结果、数值模拟结果和地质调查对左家营崩塌机理进行分析。研究结果表明:固定梁可作为采空区顶板反倾层状岩体的受力模型,采空区顶板受力由固定梁向简支梁转化;采空区两侧端面应力集中现象明显,且应力集中朝顺倾向偏移,顺倾向应力集中较反倾向显著,采空区顶底板中部局部呈受拉状态,塑性区以剪切破坏为主;上硬下软不利岩性组合和节理裂隙发育的岩体造成的岩体结构破碎是崩塌源区形成的关键因素,高度临空的斜坡地形为崩滑提供了有利地形,采空区应力调整导致已有裂缝裂隙不断扩展、贯通,加剧斜坡失稳,最终形成崩塌。  相似文献   

14.
李川  张明 《矿产勘查》2018,9(11):2246-2249
深井上下山煤柱区巷道围岩应力高度集中,矿压显现剧烈,是煤矿动力灾害多发区。文章通过FLAC~(2D)数值模拟及微震监测等对深井上下山煤柱区巷道围岩响应特征进行研究。结果表明:随着7、9煤层两侧工作面的开采,上下山巷道围岩应力、位移、塑性区分布等响应特征均不断增加,且上升趋势越明显,越易发生冲击破坏;针对不同的开采阶段及矿压显现,提出针对性的煤柱区动力灾害控制措施。研究成果为深井煤岩动力灾害防治提供借鉴和指导。  相似文献   

15.
为研究平煤矿区深部岩石开采工作面底板岩体破坏机制,在传统的单一岩层底板塑性滑移线场理论基础上,构建三层复合结构底板塑性滑移线场力学模型,推导得出5种工况下底板最大破坏深度理论解;模拟分析不同推进度下底板岩体应力场分布规律及塑性变形特征;最后运用振弦式应变计实时监测十二矿己15–31040岩石开采工作面底板岩体微应变量,得到采面采前–采中–采后底板变形发育形态及破坏域。结果表明:(1)该工作面底板主动破坏区深度位于中层与下层结构岩层之间,属第三种工况,最大破坏深度理论解为17.08 m;(2)模拟实验发现了底板岩体破坏与损伤主要集中在开切眼及两巷下方,以塑性滑移破坏形式为主,破坏深度为17.1~17.9 m,且寒灰承压水导升高度小于石炭系底部铝土泥岩厚度,有效隔水层可抵御寒灰水导升;(3)实测数据显示底板破坏初始位置超前采面7.9m,以压剪破坏形式为主,临近采面底板岩体进入采空区后转化为拉剪破坏,破坏深度可达16.5~18 m,温度监测显示采动破坏带的下部岩体仍具有良好的抗渗性。理论计算与模拟实验及实测结果相一致,可为相似地质条件下煤岩层开采工作面底板水害防治提供理论指导和实践参考。  相似文献   

16.
防控底板突水危害的重点在于研究完整底板由隔水层到导水通道的演化过程。根据采矿过程中底板岩体在压–拉–压荷载下弹性刚度变化特点,以弹性模量作为损伤变量,采用双标量型D-P弹塑性损伤本构模型,由成庄矿工程地质条件为背景建立有限元模型,分析工作面推进过程中底板导水通道演化规律。得到主要结论如下:(1)采动底板中同时存在压、拉损伤破裂带,压缩、拉伸损伤分别超前、滞后煤壁产生,二者相互连通,形成斜穿工作面煤壁平面的导水通道。(2)底板破坏深度随顶板悬露面积增大而增加,并导致上一计算步煤壁处底板破裂深度二次加深。工作面煤壁位置处底板压缩损伤深度的增长速率在充填体影响下迅速减小(顶板初次垮落),并最终达到稳定(顶板周期垮落)。(3)充填体的弹性模量过低会导致破坏深度持续快速增加。在充填体作用下,底板岩体中张拉裂隙闭合,弹性刚度有所恢复,同时岩体渗透性降低。由注水试验所得监测结果与数值模拟成果基本吻合。  相似文献   

17.
深部厚煤层综放沿空掘巷煤柱合理宽度试验研究   总被引:1,自引:0,他引:1  
 煤柱合理宽度的确定是影响综放沿空掘巷围岩稳定性的重要因素。以深部厚煤层综放沿空掘巷赵楼煤矿11302工作面轨道巷为工程背景,首次提出一种新型侧向支承压力监测方法,通过现场应力监测和数值模拟相结合的研究方法确定区段煤柱合理留设宽度。现场应力监测与数值模拟结果显示,采空区侧向支承压力影响范围为50~56 m,低应力区宽度为12~15 m,考虑沿空巷道应处于应力降低区内,煤柱留设宽度不应大于7~10 m;同时,从有利于锚杆锚固出发,煤柱宽度不应小于4 m。综合考虑煤柱稳定性、次生灾害控制及煤炭资源回收等因素,最终确定煤柱留设宽度为5 m。采用大型地质力学模型试验与现场试验对煤柱宽度合理性进行验证,结果表明,巷道表面位移均呈现沿空帮>顶板>实体帮>底板的变化趋势,掘巷稳定后,现场实测顶底板移近量最大为271 mm,两帮移近量最大为359 mm,巷道围岩控制效果较好;同时,锚杆、锚索受力均在其屈服范围内,并为回采期间预留充足的余量。研究结果可为类似开采条件下的区段煤柱宽度确定提供参考依据。  相似文献   

18.
以王家山煤矿工程地质条件与强矿压显现特征为背景,利用室内试验、理论分析、数值试验和现场观测等综合研究手段,研究了急倾斜煤层开采覆岩初次、周期顶板破断机制,揭示了煤、岩非对称应力分布特征与演化规律,提出了强矿压显现危险区域预测与定向弹性能释放强矿压控制方法。取得的主要研究成果有:(1)基于弹性力学理论,建立了横纵荷载作用下急倾斜煤层基本顶的薄板力学模型,分析了基本顶上、下板面的应力分布特征,获得了基本顶断裂线发育轨迹与破坏区演化规律,提出了急倾斜煤层基本顶的初次破断"V-Y"型断裂模式。研究表明,急倾斜煤层基本顶初次断裂的空间顺序为"中上部→中下部→上部→下部"。结合数值模拟、现场监测等手段,验证了基本顶初次断裂过程中采场围岩应力场分布及矿压显现具有时序性和非对称特征。(2)基于弹性力学理论,建立了急倾斜综放面推进过程中基本顶由小三角形悬板→大三角形悬板→斜梯形板转化的薄板力学模型,计算出3种形状基本顶的上、下板面的应力分布,揭示了断裂线发育轨迹与破坏区演化过程,阐明了急倾斜煤层基本顶周期破断的"四边形"型断裂模式。研究表明,急倾斜煤层基本顶周期断裂的空间顺序为"中下部→中上部→上部→下部"。结合数值模拟、现场监测等手段,验证了基本顶周期断裂过程中采场围岩应力场分布及矿压显现具有时序性和非对称特征。(3)采用离散元数值模拟及现场实测等手段,揭示了王家山矿急倾斜特厚煤层(群)回采煤、岩应力分布特征与演化规律。发现了急倾斜综放工作面煤体支承压力动压区呈"圆弧形"分布,稳压区呈"矩形"分布的非对称分布特征。利用离散元数值模型证明了区段工作面顶板周期断裂同样符合"四边形"周期断裂模式。(4)以王家山煤矿工程地质条件与强矿压显现特征为背景,采用综合指数法、超静定梁理论、统计学理论等方法,提出了"井田→工作面→近场→定点"层次化危险区预测与关键部位监测方法,并针对不同危险等级制定了相应的强矿压防治方案。(5)采用数值模拟、现场实测等手段,研究了王家山矿急倾斜煤层开采强矿压致灾机制,即上部基本顶在侧支承压力与顶板断裂的综合影响下,可能发生混合型强矿压。中部基本顶断裂可能发生诱发型强矿压,下部基本顶较稳定易发生能量聚集型强矿压。(6)发现了超前顶板重点卸压区域的弹性能释放后由能量转移与积聚而形成"人"字型能量分叉形态,构成了顶板防冲卸压后的主要来压路径。据此提出了急倾斜特厚煤层弹性能定向释放强矿压控制方法,将方法分为悬顶能量释放与次生能量消耗2个阶段,并分析了各阶段的作用。通过顶板动态监测与地音监测检验,证明此方法能够在有效的缩短悬顶面积,减小工作面顶板压力与来压步距的同时,降低由顶板卸压造成次生灾害的可能。  相似文献   

19.
以山东济宁高庄煤矿巨厚岩层条件下留设大煤柱的工作面回采安全性为背景,采用理论分析和工程实践等方法,研究巨厚岩层–煤柱系统的协调变形模型及其稳定性。主要研究内容和结论:(1)在满足煤柱顶板岩层断裂线因素和支承强度因素的情况下,煤柱能够"隔离"采空区并对巨厚岩层及其覆岩结构形成"支撑"作用;(2)以巨厚岩层挠曲变形和煤柱竖直方向"压缩"变形为基础,建立巨厚岩层–煤柱协调变形力学模型,分析煤柱竖直变形的应力来源、形式和整体协调变形机制,得到巨厚岩层–煤柱系统协调变形的应力–应变关系;(3)探讨巨厚岩层–煤柱系统失稳类型、判据和对井下动力灾害发生的影响,提出灾害防治技术。运用研究成果分析3上1102工作面采前巨厚岩层–煤柱系统稳定性,并对灾害进行预测,根据回采阶段微震监测结果与动力显现情况,初步验证了研究的合理性,通过实施针对性预防措施,最终实现了工作面"有震无灾"的安全回采目的。  相似文献   

20.
孤岛工作面采前冲击危险性预评估研究   总被引:1,自引:0,他引:1  
为研究开采扰动下孤岛工作面冲击危险性,基于覆岩空间结构理论分析了开采前后两侧采空区顶板结构动态变化和力学响应。首先基于能量力学模型,推导了工作面开采后覆岩演化高度的计算公式。根据两侧采空区顶板结构的不同,将孤岛工作面覆岩结构分为长臂对称"T"结构、短臂对称"T"结构和非对称"T"结构。进而通过理论分析了3种孤岛工作面覆岩结构的应力传递机制,建立了孤岛工作面静载荷、动载荷估算模型,进而提出了工作面支承压力估算方法,并构建了孤岛工作面采前冲击危险预评估体系。采用估算模型及评估方法,对朝阳煤矿3112孤岛工作面进行了冲击危险性评估,为现场实践提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号