首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 204 毫秒
1.
The degradation of commonly detected organophosphorus (OP) pesticides, in drinking water sources, was investigated under simulated chloramination conditions. Due to monochloramine autodecomposition, it is difficult to observe the direct reaction of monochloramine with each OP pesticide. Therefore, a model was developed to examine the reaction of monochloramine (NH2Cl) and dichloramine (NHCl2) with chlorpyrifos (CP), diazinon (DZ), and malathion (MA). Monochloramine was found not to be very reactive with each OP pesticides, . While, dichloramine (NHCl2) was found to be 2 orders of magnitude more reactive with each of the OP pesticides than monochloramine, , which is still three orders of magnitude less than the hypochlorous acid reaction rate coefficient with each OP pesticide. For each pesticide, the reactivity of the three chlorinated oxidants was then found to correlate with half-wave potentials (E1/2) of each oxidant. With reaction rate coefficients for the three chlorinated oxidations as well as neutral and alkaline hydrolysis rate coefficients for the pesticides, the model was used to determine the dominant reaction pathways as a function of pH. At pH 6.5, OP pesticide transformation was mostly due to the reaction of hypochlorous acid and dichloramine. Above pH 8, alkaline hydrolysis or the direct reaction with monochloramine was the primary degradation pathway responsible for the transformation of OP pesticides. This demonstrates the ability of models to be used as tools to elucidate degradation pathways and parameterize critical reaction parameters when used with select yet comprehensive data sets.  相似文献   

2.
Four bacterial strains capable of growing on two organophosphorus pesticides (malathion and fenitrothion) were isolated from activated sludge. Among these isolates, the species Stenotrophomonas maltophilia was found to be capable of using fenitrothion as the sole carbon and nitrogen source, and malathion as the sole carbon source. There appear to be no similar reported findings. A crude juice of dates was tested as an additional carbon source for malathion degradation. The biodegradability was significantly enhanced with the supplementation of date juice. The degradation efficiency of the pesticide tested at a concentration of 60 mg/L reached the maximum value of 89% in the presence of date juice at 30 g/L reducing sugar. Statistical screening of four operating parameters (initial biomass concentration, aeration rate, agitation and temperature) for biomass growth and for malathion degradation by acclimated indigenous activated sludge was carried out using a fractional factorial design.  相似文献   

3.
Abstract In rooms where pesticides were applied, air was analysed for its biocide content. Inhabitants of investigated homes attributed their health complaints to pesticide exposure in their homes. Airborne pesticides originating from wood preservatives were sampled on polyurethane foams or Tenax TA and analysed after solvent desorption by HRGC with different types of detector. In investigated homes, concentrations of diazinon, phenthoate, phoxim, propoxur, dichlofluanid, endosulfan, permethrin and tributyltinoxide were found between ≤0.002 and 0.347 μg/m3. In one home, four years after pest control, chlorpyrifos amounted to 0.515 μg/m3. Permethrin emission from a wool carpet ranged between 0.013 and 0.060 μg/m3. Vacuum cleaning for ten minutes increased airborne permethrin up to 0.096 μg/m3. In house dust, diazinon, phenthoate and permethrin were determined in concentrations of 0.60 ≤g/g, 181.00 pg/g and 0.14 μg/g dust, respectively. Estimated inhaled pesticides ranged between ≤0.04 and 10.3 μg/day. Dust ingestion contributed to 0.03–36.2 μg/day. Pesticide intake through inhalation and dust ingestion was estimated to range between 4% and 120% of the ADI-value. Based on today's knowledge, toxic effects are not anticipated.  相似文献   

4.
Yu JJ 《Water research》2002,36(4):1095-1101
Organophosphate pesticides including fenitrothion chlorpyrifos, diazinon, methamidophos, edifenphos, mevinphos, fenthion, and acephate present in agro-wastewater can be effectively removed by supercritical carbon dioxide (SC-CO2) extraction. Near quantitative removal of the pesticides from the aqueous solution can be achieved by SC-CO2 at 90 degrees C and 325 atm for 20 min of static extraction followed by 40 min of dynamic extraction. The extracted pesticides were collected in a small amount of Fenton's solution. The pesticides in Fenton's solution were degraded completely within an hour after the collection. A combination of SC-CO2 extraction and subsequent degradation by Fenton's reagent may provide an alternative water purification strategy for treating organophosphate pesticides in agro-wastewater.  相似文献   

5.
Ohno K  Minami T  Matsui Y  Magara Y 《Water research》2008,42(6-7):1753-1759
We investigated effects of chlorination on four organophosphorus pesticides (diazinon, isoxathion, malathion, and tolclofos-methyl) adsorbed on powdered activated carbon (PAC). Following adsorption of each pesticide on 10mg/L of PAC in water, chlorine was added. After 30min of chlorination, the corresponding oxons were detected in the water, but the parent compounds were not detected. Molar ratios of the oxon concentration in solution after 30min of chlorine addition to the initial pesticide concentration before the adsorption process were 4.1% and 7.9% for diazinon, 3.9% and 5.8% for isoxathion, 1.2% and 1.7% for malathion, and 1.4% and 1.4% for tolchlofos-methyl, in the case of 2 and 5mg/L of chlorine addition. The results suggested that the oxons were desorbed from the PAC by chlorination. The concentrations of the desorbed oxons gradually decreased with time, apparently owing to their readsorption by the PAC. Results from additional experiments suggest the following sequence of events: (i) adsorbed pesticides are oxidized by chlorine on the surface of the PAC and transformed into corresponding oxons; (ii) the oxons are released from the PAC; (iii) the released oxons are gradually readsorbed by the PAC, decreasing their concentrations in the water phase.  相似文献   

6.
Pesticides are used intensively for crop protection in tropical fruit plantations. Assessments of the relative risks posed by pesticides are needed to assist in the development of management plans that minimize ecological impacts. In this study, the risk indicator SYNOPS_2 was used to compare risks to aquatic ecosystems by pesticides commonly used in papaya plantations. Plant interception and spray drift were measured during six applications of three pesticides (chlorothalonil, chloropyrifos, and malathion) using a turbo fan driven sprayer. Plant interception was estimated to be higher (42.6+/-12.7%; p=0.04) in late (8-14 months old) than in early (4 months old) trees (20.1+/-25.3%). Chlorothalonil concentrations of up to 11.0 microg L(-1) were found in water from an adjacent ditch after field application. Concentrations of this pesticide (7.4+/-4.1 microg L(-1)) in runoff water were also significantly (p<0.01) higher than those of malathion (2.4+/-1.9 microg L(-1)) and chlorpyrifos (0.8+/-0.5 microg L(-1)). Good correlation between measured and predicted values (r2=0.56-0.85, p<0.01) showed that SYNOPS_2 is able to describe trends in runoff pollution in papaya plantations. Linear equations were obtained in order to correct numerical disagreement between measured and calculated runoff concentrations. An independent test showed a reasonable agreement between measured chlorothalonil concentrations and the predicted values using the proposed equations. Fifteen pesticides used in papaya cultivation were ranked according to their calculated chronic biological risk index. Pesticides with the highest risk index for non-target organisms were: chlorothalonil for algae, lambda cyahalotrin for Daphnia and fish, and malathion for earthworms. Chlorothalonil was the pesticide with the highest exposure level in water and therefore represents a high risk for aquatic life. Results show that SYNOPS_2 can be used as a pesticide risk indicator on papaya and possibly other tropical fruit plantations.  相似文献   

7.
The simultaneous disappearance of four organophosphorous insecticides in a Mediterranean calcareous soil was evaluated in the presence of surfactant solutions and municipal wastewater. A cationic, an anionic and a non-ionic surfactant were used at a low (0.75 mg L−1) and at a high (twice the critical micelle concentration) concentration level. The cationic surfactant was also studied at a higher concentration. Dissipation in control soil was rapid for malathion (half-life 4 days), intermediate for dimethoate and methidathion (ca. 6 days) and slow for diazinon (29 days). Wastewater did either not modify (diazinon, dimethoate and methidathion) or slightly enhance (malathion) insecticide decay. The increase in concentration of the non-ionic surfactant Tween 80 resulted in enhanced dissipation rates for all the pesticides except diazinon. The addition of the anionic surfactant did not show a clear trend. At the highest cationic surfactant concentration a reduction of pesticide disappearance occurred linked with a reduced availability, since the insecticides were retained on the surfactant-modified soil (final residual concentration of 85% for diazinon and ≈55% for methidathion and dimethoate). Soil microbial activity, estimated by measuring dehydrogenase activity, was low in wastewater- and surfactant-treated soil at the high levels. Fitting of the experimental data to commonly used mathematical models was poor and alternatives were looked for.  相似文献   

8.
Concentration and loading of pesticide residues in Lake Biwa basin (Japan).   总被引:6,自引:0,他引:6  
The concentrations and loading rates of pesticides used in paddy fields were investigated over a period of 5 years in the Seta River, which is the only natural outlet of Lake Biwa. The lake's water catchment area is 3,174 km2, 20% of which contains paddy fields. Water samples were also collected in six rivers flowing into the lake in order to compare the contamination level and concentration profile. The pesticides analyzed were four herbicides (molinate, simetryn, oxadiazon, and thiobencarb), one fungicide (isoprothiolane), and two insecticides (diazinon and fenitrothion). Molinate, simetryn, oxadiazon and isoprothiolane were found at the higher frequencies with maximum concentrations of 1.1, 0.4, 0.1 and 0.5 microg,/l in the effluent river, one or two order of magnitude higher than that of effluent in influent rivers. These peak concentrations were observed during the application period in influent rivers and two or three weeks after that in effluent river. The frequency of occurrence of thiobencarb, diazinon, and fenitrothion was relatively low and their maximum concentrations in the effluent remained below 0.1 microg/l. The decrease of molinate, simetryn and oxadiazon concentrations in the effluent river were approximated by two straight lines plotted on semilogarithmic scale. Increased loading was induced by intense rainfall, which took place during the application period. Simetryn and isoprothiolane persisted in relatively high concentrations through the year were also influenced on its loading by the heavy rainfall in the following months. The percentages of the total amount of pesticides released through Lake Biwa to the basin in downstream were estimated to be 1.3-2.9% for molinate, 5.4-10.0% for simetryn, 0.6-1.3% for oxadiazon, 0.2-0.9% for thiobencarb, 1.8-6.6% for isoprothiolane, 0.3-2.1% for diazinon. and 0% for fenitrothion.  相似文献   

9.
In April 1995, the US Geological Survey began a study to determine the occurrence and temporal distribution of 49 pesticides and pesticide metabolites in air and rain samples from an urban and an agricultural sampling site in Mississippi. The study was a joint effort between the National Water-Quality Assessment and the Toxic Substances Programs and was part of a larger study examining the occurrence and temporal distribution of pesticides in air and rain in the Mississippi River basin. Concurrent high-volume air and wet-only deposition samples were collected weekly. The air samplers consisted of a glass-fiber filter to collect particles and tandem polyurethane foam plugs to collect gas-phase pesticides. Every rain and air sample collected from the urban and agricultural sites had detectable levels of multiple pesticides. The magnitude of the total concentration was 5-10 times higher at the agricultural site as compared to the urban site. The pesticide with the highest concentration in rain at both sites was methyl parathion. The pesticide with the highest concentration in the air samples from the agricultural site was also methyl parathion, but from the urban site the highest concentration was diazinon followed closely by chlorpyrifos. More than two decades since p,p'-DDT was banned from use in the United States, p,p'-DDE, a metabolite of p,p'-DDT, was detected in every air sample collected from the agricultural site and in more than half of the air samples from the urban site.  相似文献   

10.
Weekly composite air samples were collected from early April through to mid-September 1995 at three paired urban and agricultural sites along the Mississippi River region of the Midwestern United States. The paired sampling sites were located in Mississippi, Iowa, and Minnesota. A background site, removed from dense urban and agricultural areas, was located on the shore of Lake Superior in Michigan. Each sample was analyzed for 49 compounds; of these, 21 of 26 herbicides, 13 of 19 insecticides, and 4 of 4 related transformation products were detected during the study, with most pesticides detected in more than one sample. The maximum number of pesticides detected in an air sample was 18. Herbicides were the predominant type of pesticide detected at every site. Detection frequencies of most herbicides were similar at the urban and agricultural sites in Iowa and Minnesota. In Mississippi, herbicides generally were detected more frequently at the agricultural site. The insecticides chlorpyrifos, diazinon, and carbaryl, which are used in agricultural and non-agricultural settings, were detected more frequently in urban sites than agricultural sites in Mississippi and Iowa. Methyl parathion was detected in 70% of the samples from the Mississippi agricultural site and at the highest concentration (62 ng/m3 air) of any insecticide measured in the study. At the background site, dacthal (100%), atrazine (35%), cyanazine (22%), and the (primarily atrazine) triazine transformation products CIAT (35%) and CEAT (17%) were detected most frequently, suggesting their potential for long-range atmospheric transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号