首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven years of monitoring groundwater in the Gaza Strip has shown that nitrate was and still is a major groundwater pollutant. The objectives of this research were to study the distribution of NO(3)(-) in the groundwater of the Gaza Strip and to identify the sources of NO(3)(-) in the Gaza aquifer system by assessing nitrogen and oxygen isotopes. The most recent samples collected in 2007 showed 90% of the wells having NO(3)(-) concentrations that are several times higher than the WHO standards of 50 mg/L. Potential NO(3)(-) source materials in Gaza are animal manure N, synthetic NH(4) based fertilizers, and wastewater/sludge. The average concentrations of N in the sludge, manure and soil of Gaza were 2.9%, 1% and 0.08%, respectively. The range in delta(15)N of solid manure samples was +7.5 to +11.9 per thousand. The range in delta(15)N of sludge samples was +4.6 to +7.4 per thousand, while four brands of synthetic fertilizers commonly used in Gaza had delta(15)N ranging from +0.2 to +1.0 per thousand. Sludge amended soil had delta(15)N ranging from +2.0 to +7.3 per thousand. For both delta(18)O and delta(15)N, the ranges of groundwater NO(3)(-) were -0.1 to +9.3 per thousand and +3.2 to 12.8 per thousand, respectively. No significant bacterial denitrification is taking place in the Gaza Strip aquifer. Nitrate was predominantly derived from manure and, provided delta(15)N of sludge represents the maximum delta(15)N of human waste, to a lesser extent from septic effluents/sludge. Synthetic fertilizers were a minor source.  相似文献   

2.
Use of a pilot-scale fixed-film bioreactor was investigated for remediation of bromate contamination within groundwater. Bromate reduction with stoichiometric production of bromide was observed, providing supporting evidence for complete reduction of bromate with no production of stable intermediates. Reduction of 87-90% bromate from an influent concentration of 1.1 mg L(-1) was observed with retention times of 40-80 h. Lower retention times led to decreases in bromate reduction capability, with 11.5% removal at a 10 h retention time. Nitrate reduction of 76-99% from a 30.7 mg L(-1) as NO(3)(-) influent was observed at retention times of 10-80 h, although an increase in nitrite production to 2.7 mg L(-1) occurred with a 10 h retention time. Backwashing was not required, with the large plastic packing media able to accommodate biomass accumulation without decreases in operational efficiency. This study has provided proof of concept and demonstrated the potential of biological bromate reduction by fixed-film processes for remediation of a bromate contaminated groundwater source.  相似文献   

3.
Nitrogen transformations and their response to salinization were studied in bottom sediment of a coastal freshwater lake (Haringvliet Lake, The Netherlands). The lake was formed as the result of a river impoundment along the south-western coast of the Netherlands, and is currently targeted for restoration of estuarine conditions. Nitrate porewater profiles indicate complete removal of NO(3)(-) within the upper few millimeters of sediment. Rapid NO(3)(-) consumption is consistent with the high potential rates of nitrate reduction (up to 200 nmol N cm(-3) h(-1)) measured with flow-through reactors (FTRs) on intact sediment slices. Acetylene-block FTR experiments indicate that complete denitrification accounts for approximately half of the nitrate reducing activity. The remaining NO(3)(-) reduction is due to incomplete denitrification and alternative reaction pathways, most likely dissimilatory nitrate reduction to NH(4)(+) (DNRA). Results of FTR experiments further indicate that increasing bottom water salinity may lead to a transient release of NH(4)(+) and dissolved organic carbon from the sediment, and enhance the rates of nitrate reduction and nitrite production. Increased salinity may thus, at least temporarily, increase the efflux of NH(4)(+) from the sediment to the surface water. This work shows that salinity affects the relative importance of denitrification compared to alternative nitrate reduction pathways, limiting the ability of denitrification to remove bioavailable nitrogen from aquatic ecosystems.  相似文献   

4.
Evidence of anoxic methane oxidation coupled to denitrification   总被引:3,自引:0,他引:3  
Denitrification using methane as sole electron donor under anoxic condition was investigated. Sludge produced by a denitrifying reactor using acetate as electron donor was put in contact with methane at partial pressures from 1.8 to 35.7kPa. Nitrate depletion and gaseous nitrogen production were measured. The denitrification rate was independent of the methane partial pressure when superior or equal to 8.8kPa. The nitrate depletion was asymptotic. A denitrification rate of 0.25g NO(3)(-)-Ng(-1) VSSd(-1) was observed at the onset of culturing, followed by a slower and lineal denitrification rate of 4.9x10(-3)g NO(3)(-)-Ng(-1) VSSd(-1). Abiotic nitrate removal or the availability of another carbon source were discarded from control experiments made in the absence of methane or using sterilized inoculum.  相似文献   

5.
Li YP  Cao HB  Zhang Y 《Water research》2007,41(1):197-205
Hemoglobin (Hb) was immobilized on carbon nanotube (CNT) electrode to catalyze the dehalogenation of haloacetic acids (HAAs). FTIR and UV measurements were performed to investigate the activity-keep of Hb after immobilization on CNT. The electrocatalytic behaviors of the Hb-loaded electrode for the dehalogenation of HAAs were studied by cyclic voltammmetry and constant-potential electrolysis technique. An Hb-loaded packed-bed flow reactor was also constructed for bioelectrocatalytic dehalogenation of HAAs. The results showed that Hb retained its nature, the essential features of its native secondary structure, and its biocatalytic activity after immobilization on CNT. Chloroacetic acids and bromoacetic acids could be dehalogenated completely with Hb catalysis through a stepwise dehalogenation process at -0.400V (vs. saturated calomel electrode (SCE)) and -0.200V (vs. SCE), respectively. The removal of 10.5mM trichloroacetic acid and dichloroacetic acid is ca. 97% and 63%, respectively, with electrolysis for 300min at -0.400V (vs. SCE) using the Hb-loaded packed-bed flow reactor, and almost 100% of tribromoacetic acid and dibromoacetic acid was removed with electrolysis for 40min at -0.200V (vs. SCE). The average current efficiency of Hb-catalytic dehalogenation almost reaches 100%.  相似文献   

6.
The status of nitrate (NO(3)(-)), nitrite (NO(2)(-)) and ammonium (NH(4)(+)) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate delta(15)N and delta(18)O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields). The exponential increase in NO(3)(-)-delta(15)N along with the NO(3)(-) reduction and clear delta(18)O/delta(15)N slopes of NO(3)(-) ( approximately 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO(3)(-) contamination via active denitrification and reduced nitrification. Our results showed that NO(3)(-) and NH(4)(+) contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings.  相似文献   

7.
The present article examines the possibilities of investigating NO(3)(-) spread in aquifers by applying multicomponent statistical methods (factor, cluster and discriminant analysis) on hydrogeological, hydrochemical, and environmental parameters. A 4-R-Mode factor model determined from the analysis showed its useful role in investigating hydrogeological parameters affecting NO(3)(-) concentration, such as its dilution by upcoming groundwater of the recharge areas. The relationship between NO(3)(-) concentration and agricultural activities can be determined sufficiently by the first factor which relies on NO(3)(-) and SO(4)(2-) of the same origin-that of agricultural fertilizers. The other three factors of R-Mode analysis are not connected directly to the NO(3)(-) problem. They do however, by extracting the role of the unsaturated zone, show an interesting relationship between organic matter content, thickness and saturated hydraulic conductivity. The application of Hirerarchical Cluster Analysis, based on all possible combinations of classification method, showed two main groups of samples. The first group comprises samples from the edges and the second from the central part of the study area. By the application of Discriminant Analysis it was shown that NO(3)(-) and SO(4)(2-) ions are the most significant variables in the discriminant function. Therefore, the first group is considered to comprise all samples from areas not influenced by fertilizers lying on the edges of contaminating activities such as crop cultivation, while the second comprises all the other samples.  相似文献   

8.
Although nitrate is recognized as the most common groundwater contaminant due to growing anthropogenic sources, such as agriculture in particular, its adverse effects on human and animal health are debatable. The current issue, however, is to control and reduce nitrate contamination with regards to the long residence time of groundwater within aquifers. Denitrification has recently been recognized for its ability to reduce high nitrate concentrations in groundwater. The Kakamigahara groundwater basin, Gifu prefecture, Japan, witnessed rising levels of nitrate (>12 mg/l NO(3)-N) originating from agricultural sources. Chemical analyses for the determination of major constituents of groundwater and delta(15)N of residual nitrate were performed on representative groundwater samples in order to fulfill two main objectives. One is to investigate the current situation of nitrate groundwater pollution. The second objective is to determine whether the denitrification is a potential natural mechanism, which eliminates nitrate pollution in the Kakamigahara aquifer. Agricultural nitrate contamination of groundwater was obvious from characteristically high concentrations of Ca(2+), Mg(2+), NO(3)(-) and SO(4)(2-). High nitrate concentrations were found on the eastern side of the basin in association with vegetable cultivation fields, and decreased gradually towards the west of the basin along the direction of groundwater flow. The decrease of nitrate concentration was conveniently coupled with increase of HCO(3)(-) (the heterotrophic denitrification product), pH and delta(15)N of residual nitrate (due to isotopic fractionation) from east to west. Therefore, denitrification in situ is continuously removing nitrate from the Kakamigahara groundwater system.  相似文献   

9.
Lee JY  Seo SJ  Yun SH  Moon SH 《Water research》2011,45(17):5375-5380
A noble electrode for capacitive deionization (CDI) was prepared by embedding ion exchanger onto the surface of a carbon electrode to practice membrane capacitive deionization (MCDI). Bromomethylated poly (2, 6-dimethyl-1, 4-phenylene oxide) (BPPO) was sprayed on carbon cloth followed by sulfonation and amination to form cation exchange and anion exchange layers, respectively. The ion exchange layers were examined by Scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FT-IR). The SEM image showed that the woven carbon cloth was well coated and connected with BPPO. The FT-IR spectrum revealed that sulfonic and amine functional groups were attached on the cationexchange and anionexchange electrodes, respectively. The advantages of the developed carbon electrodes have been successively demonstrated in a batch and a continuous mode CDI operations without ion exchange membranes for salt removal using 100 mg/L NaCl solution.  相似文献   

10.
In agricultural areas, nitrate (NO3-) is a common groundwater pollutant as a result of extensive fertilizer application. At elevated concentrations, NO3- consumption causes methemoglobinemia in infants and has been linked to several cancers; therefore, its removal from groundwater is important. The addition of hydrogen gas (H2) via gas-permeable membranes has been shown to stimulate denitrification in a laboratory-scale reactor. This research, using large columns packed with aquifer material to which a simulated groundwater was fed, was conducted to further identify the conditions required for the use of membrane-delivered H2 in situ. In this study, we show that this novel technology was capable of treating highly contaminated (25 mg/L NO3- -N) and oxygenated (5.5mg/L dissolved oxygen) water, but that nutrient addition and gas pressure adjustment was required. Complete NO3- reduction was possible without the accumulation of either NO2- or N2O when the H2 lumen pressure was increased to 17 psi and phosphate was added to the groundwater. The total organic carbon content of the effluent, 110 cm downgradient of H2 addition, did not increase. The results from these experiments demonstrate that this technology can be optimized to provide effective NO3- removal in even challenging field applications.  相似文献   

11.
Haugen KS  Semmens MJ  Novak PJ 《Water research》2002,36(14):3497-3506
A novel in situ membrane technology was developed to remove nitrate (NO3-) from groundwater. Membrane-fed hydrogen gas (H2) was used as an electron donor to stimulate denitrification. A flow-through reactor fit with six hollow-fiber membranes (surface area = 93 cm2) was designed to simulate groundwater flowing through an aquifer with a velocity of 0.3 m/day. This membrane technology supported excellent NO3- and nitrite (NO2-) removal once H2 and carbon limitations were corrected. The membrane module achieved a maximum H2 flux of 1.79 x 10(-2) mg H2/m2 s, which was sufficient to completely remove 16.4 mg/L NO3(-)-N from a synthetic groundwater with no NO2- accumulation. In addition, this model in situ treatment process produced a high quality water containing <0.5 mg/L total organic carbon.  相似文献   

12.
Karim K  Gupta SK 《Water research》2003,37(12):2953-2959
The effect of COD/NO(3)(-)-N ratio on the biotransformation and removal of 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP) was studied in bench scale upflow anaerobic sludge blanket (UASB) reactors. Sodium acetate and sodium nitrate were used as electron donor (substrate) and electron acceptor, respectively. Nitrate nitrogen loading was increased from 0.098 to 0.6 kg/m(3)d in order to keep COD/NO(3)(-)-N ratio as 20.8, 14.3, 9.8, 5.0, 4.0 and 3.33. Throughout the study, input nitrophenolic concentration and hydraulic retention time (HRT) were kept constant as 30 mg/l and 24h, respectively. 2-Aminophenol (2-AP), 4-aminophenol (4-AP) and 2-amino,4-nitrophenol (2-A,4-NP) were found as the major intermediate metabolite of 2-NP, 4-NP and 2,4-DNP, respectively. Removal of all the three nitrophenols increased with lowering of COD/NO(3)(-)-N ratio. However, nitrophenols removal got adversely affected when COD/NO(3)(-)-N ratio was reduced below 5. Maximum removal achieved were 91.63%, 90.17% and 86.10% for 2-NP, 4-NP and 2,4-DNP, respectively at a COD/NO(3)(-)-N ratio of 5. Simultaneous denitrification and methanogenesis was observed in all the reactors throughout the study.  相似文献   

13.
Wang Y  Qu J  Wu R  Lei P 《Water research》2006,40(6):1224-1232
The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.  相似文献   

14.
In this paper we investigate the impact of nitrate (NO(3)(-)) concentration and temperature on the production of carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O). We studied sediment collected during spring, summer and autumn from a constructed pond in South Sweden. Homogenised sediment samples were dark incubated in vitro under N(2) atmosphere at 13 degrees C and 20 degrees C after addition of five NO(3)(-) concentrations, between 0 and 16 mg NO(3)(-)-N per litre. We found higher net production of N(2)O and CO(2) at the higher temperature. Moreover, increased NO(3)(-) concentrations had strong positive impact on the N(2)O concentration, but no effect on CH(4) and CO(2) production. The lack of response in CO(2) is suggested to be due to the use of alternative oxidants as electron acceptors. Interaction between NO(3)(-) and temperature suggests a further increase of N(2)O net production when both NO(3)(-) and temperature are high. Our interpretation of the CH(4) data is that at high concentrations of NO(3)(-) temperature is of less importance for CH(4) production. We also found that at 13 degrees C CH(4) production was substrate limited and that the addition of acetate increased CH(4) as well as CO(2) production. There was a seasonal effect on gas production potential, with more CH(4) and N(2)O produced in spring than in summer. Re-calculation of the gas concentrations into global warming potential (GWP) units (i.e. CO(2), CH(4), and N(2)O transferred to CO(2) equivalents) shows that GWP increases with temperature. However, under environmental conditions generally occurring in South Swedish ponds, i.e. low temperature and high NO(3)(-) concentration during spring and high temperature and low NO(3)(-) concentration during summer, NO(3)(-) concentration is of minor importance.  相似文献   

15.
The nitrogen (N) composition of streams draining four upland regions of Scotland was compared in samples collected monthly between April 1997 and April 1998. Stream samples were analysed for total N (TN), particulate N (PN), nitrate (NO3), ammonium (NH4), dissolved organic N (DON) and dissolved organic carbon (DOC). Concentrations of TN were small, generally less than 1 mg l(-1) , dominated by dissolved forms of N, and varied significantly between upland regions. Nitrate accounted for most of the variability in TN; largest concentrations were observed in the Southern Uplands and smallest concentrations were observed in the Highlands. Nitrate concentrations were positively correlated with the percentage cover of improved grasslands and brown forest soils and negatively correlated with the percentage cover of peat. Concentrations of DON also varied between regions, but to a lesser extent than those of NO3. Largest concentrations occurred in SW Scotland and smallest concentrations in the Cairngorms. Although a significant positive correlation between DON and DOC was observed, stream water DON content was not related to the percentage cover of peat in the catchment, as was the case for DOC. The average DOC:DON ratio was narrower for streams in the Southern Uplands than for those in the Cairngorms and Highlands. Nitrate and DON displayed contrasting seasonal trends; NO3 concentrations were larger in the winter while DON concentrations were larger in the summer. Only a small proportion, < 8% and < 7%, of TN was PN and NH4, respectively, the majority of N was present as either NO3 or DON. Nitrate was the dominant fraction (58-65%) in all regions except the Highlands where DON accounted for 57% of TN. However, the relative importance of the DON component increased in the summer in all regions. This study has demonstrated that the DON fraction is an important component of the total N transported by streams from upland catchments in Scotland. Thus, assessments of anthropogenic impacts on N losses from upland ecosystems need to consider not only the dissolved inorganic species but also DON.  相似文献   

16.
Arsenic concentrations in shallow groundwaters from the Hetao Basin of Inner Mongolia range between 0.6 and 572 microg/L. High As groundwaters generally occur in the shallow alluvial-lacustrine aquifers, which are mainly composed of black (or dark grey) fine sands in a reducing environment. They are characterized by high concentrations of dissolved Fe, Mn, HCO(3)(-), P and S(2-), and low concentrations of NO(3)(-) and SO(4)(2-). Low SO(4)(2-) coupled with high S(2-) suggests that SO(4)(2-) reduction has been an active process. In the reducing groundwaters, inorganic As(III) accounts for around 75% of total dissolved As. Total As contents in the sediments from three representative boreholes are observed to be 7.3-73.3 mg/kg (average of 18.9 mg/kg). The total As is mildly-strongly correlated with total Fe and total Mn, while a quite weak correlation exists between total As and total S, suggesting that the As is associated with Fe-Mn oxides, rather than sulfides in the sediments. It is found in the sequential extraction that chemically active As is mainly bound to Fe-Mn oxides, up to 3500 microg/kg. The mobilization of As under reducing conditions is believed to include reductive dissolution of Fe-Mn oxides and reduction of adsorbed As. Although exchangeable As is labile and very vulnerable to hydrogeochemical condition, the contribution is relatively limited due to the low concentrations. The competition between As and other anions (such as HPO(4)(2-)) for binding sites on Fe-Mn oxides may also give rise to the release of As into groundwater. Slow groundwater movement helps accumulation of the released As in the groundwaters.  相似文献   

17.
The average nitrate concentration in the groundwater of the Vitoria-Gasteiz (Basque Country) quaternary aquifer rose from 50 mg NO3-/l during 1986 to over 200 mg/l in 1995, which represents an increase of some 20 mg NO3-/l per year. From 1995 to 2002, the nitrate concentration of the groundwater slightly decreased. Nitrate groundwater pollution during the period 1986-1993 was the result of the abusive use of fertilizers and of the modification in the recharge patterns of the aquifer from surface water sources. From 1993 onwards, apart from a possible rationalization in fertilizer use, the change in the origin of water for irrigation and wetland restoration (water is taken now from artificial pools outside the quaternary aquifer) must be explained in order to account for the observed decrease in nitrate concentration in the groundwater. The water of the aquifer and of the unsaturated zone were studied in two experimental plots (one of them cultivated and the other uncultivated) for 18 months (January 1993-June 1994), during the period of maximum contamination, to evaluate the effect of fertilizers on soil water and on the water in the saturated zone. The soil water was sampled using soil lysimeters at various depths. The volumetric water content of the soil was measured at the same depths using time domain reflectrometry (TDR) probes. Samples of groundwater were taken from a network of wells on the aquifer scale, two located close to the two experimental plots. The temporal evolution of nitrate concentrations in soil solutions depends on the addition of fertilizers and on soil nitrate leaching by rain. During episodes of intense rain (>50 mm in a day), the groundwater deposits are recharged with water coming from the leaching of interstitial soil solutions, causing an increase in the groundwater nitrate concentrations. The mass of nitrate leached from the cultivated zone is five times higher than that of the nitrate leached from the uncultivated zone (1147 kg NO3-/ha in the cultivated sector as against 211 kg NO3-/ha in the uncultivated sector), although part of the nitrate leached into the soil had been previously deposited by the rise of the water table. If we consider that the level of groundwater input is similar in both plots, we may conclude that 964 kg NO3-/ha circulated towards the groundwater in the cultivated zone during the period under study, representing 87% of the nitrate applied to the soil in the form of fertilizer during that period.  相似文献   

18.
Like many streams draining intensively farmed parts of lowland Scotland, water quality in the Newmills burn, Aberdeenshire, is characterized by relatively high nutrient levels; mean concentrations of NO3-N and NH3-N are 6.09 mg l(-1) and 0.28 mg l(-1), respectively, whilst average PO4-P concentrations reach 0.06 mg l(-1). Nutrient concentrations vary spatially and temporally with levels being highest under arable farming during the autumn and winter. Annual fluxes from the 14.5 km2 catchment are estimated at 25.67 and 1.26 kg ha(-1) a(-1) for NO3-N and NH3-N, respectively, and 0.26 kg ha(-1) a(-1) for PO4-P. Hydrological controls exert a strong influence on both nutrient concentrations and fluxes. Over short timescales nutrient concentrations and fluxes are greatest during storm events when P04-P and NH3-N are mobilized by overland flow in riparian areas, particularly where the soils have been compacted by livestock or farm machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, provide large contributions of NO3-N on the recession limb of hydrological events. In contrast, groundwater inputs generally have lower NO3 concentrations implying that denitrification may be a pathway of N loss in the saturated zone. Approximately 75% of the N loss for the catchment occurs during the autumn and early winter when high flows dominate the hydrological regime. The close coupling of hydrological pathways and biogeochemical processes has major implications for catchment management strategies such as Nitrate Vulnerable Zones (NVZs) as it is likely that significant groundwater stores with long residence times will continue to cause N losses before water quality improvements become apparent.  相似文献   

19.
The dissolved nitrate concentrations and their nitrogen and oxygen isotopic ratios were analyzed in seasonal samples from Korea's Han River to ascertain the seasonal and spatial variations of dissolved nitrate and its possible sources. Nitrate concentrations in the South Han River (SHR) were much higher than those in the North Han River (NHR), probably because of the more extensive distribution of agricultural fields, residential areas and animal farms in the SHR drainage basin. The nitrogen isotopic composition of dissolved nitrate indicates that nitrate-nitrogen (NO(3)(-)-N) is derived mainly from atmospheric deposition and/or soil organic matter in the NHR but comes principally from manure or sewage, with only a minor contribution from atmospheric deposition or soil organic matter, in the SHR. The oxygen isotopic compositions of dissolved nitrate suggest that most atmospheric nitrate undergoes microbial nitrification before entering the river.  相似文献   

20.
Ania CO  Béguin F 《Water research》2007,41(15):3372-3380
An electrochemical technique has been applied to enhance the removal of a common herbicide (bentazone) from aqueous solutions using an activated carbon cloth as electrode. A pH increase from acidic to basic reduces the uptake, with capacities going from 127 down to 80 mg/g at pH 2 and 7, respectively. Increasing the oxygen content of the carbon cloth causes a decrease in the bentazone loading capacity at all pH values. This indicates that adsorption is governed by both dispersive and electrostatic interactions, the extent of which is controlled by the solution pH and the nature of the adsorbent. Anodic polarization of the carbon cloth noticeably enhances the adsorption of bentazone, to an extent depending on the current applied to the carbon electrode. The electrosorption is promoted by a local pH decrease provoked by anodic decomposition of water in the pores of the carbon cloth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号