首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To overcome low permeability and fouling problems of membranes used in FO processes, modification is needed to improve the hydrophilicity, permeability and selectivity of membranes. In this work, thin film composite (TFC) commercial polyamide RO membranes (BW30‐LE, SW30‐HR, AG and AC) were functionalized with zwitterionic l ‐DOPA. The effect of l ‐DOPA on the morphology of membranes was determined via SEM, FT‐IR, AFM and contact angle analysis. The l ‐DOPA modified BW30‐LE membrane showed excellent properties with 46° contact angle and 3.8 L/m2hbar water permeability and 0.83 L/m2h salt permeability. Although, l ‐DOPA modified BW30‐LE membrane had the highest water flux and hydrophilicity, l ‐DOPA modified SW30‐HR membrane showed higher FO flux with 9.38 L/m2h than BW 30 membrane with 3.5 L/m2h at 50 g/L NaCl draw solution. Introducing hydroxyl and carboxyl ionic groups on the membrane surface with l ‐DOPA coating enhanced the FO performance and water permeability which provide a new insight in FO applications.  相似文献   

2.
Ultrafiltration membranes were prepared from blends of poly(vinylidene fluoride) (PVDF)/cellulose acetate (CA) via phase inversion method. The effect of different coagulation bath compositions on the morphology and performance of the blend membrane prepared from casting solution of PVDF/CA with ratio of 80/20 was investigated using sewage wastewater. NaCl and ethanol were used as additives of coagulation bath. Fouling analysis was conducted with Bovine Serum Albumin solution and critical flux evaluation was performed using a lab‐scale membrane bioreactor. In terms of morphological structure, the macrovoids decreased and changed to finger‐like structure. The irreversible fouling reduced and the flux recovery ratio (FRR) of the modified membranes increased remarkably while the reversible fouling caused by deposition of foulants on the surface of the membranes increased. The maximum values of FRR and critical flux of irreversibility were reached by the membrane which was prepared in the coagulation bath containing the highest concentration of NaCl.  相似文献   

3.
Qu F  Liang H  Wang Z  Wang H  Yu H  Li G 《Water research》2012,46(5):1490-1500
This paper focused on the membrane fouling caused by extracellular organic matters (EOM) which was extracted from lab-cultured Microcystis aeruginosa in stationary phase. The characteristics of EOM such as molecular weight distribution, hydrophobicity and fluorescence were measured. It was found that high molecular weight (MW) and hydrophilic organics accounted for the major parts of algal EOM which was comprised of protein-like, polysaccharide-like and humic-like substances. Ultrafiltration (UF) experiments were carried out in a stirring cell and hydrophobic polyethersulfone (PES) membranes which carried negative charge were used. Prefiltration, calcium addition and XAD fractionation were employed to change the interfacial characteristics of EOM. Then the effects of these interfacial characteristics on flux decline, reversibility and mass balance of organics were compared. Algal EOM proved to cause serious membrane fouling during UF. The fraction of algal EOM between 0.45 μm and 100 kDa contributed a significant portion of the fouling. Hydrophobic organics in EOM tended to adhere to membrane surface causing irreversible fouling, while the cake layer formed by hydrophilic organics caused greater resistance to water flow due to hydrophilic interaction such as hydrogen bond and led to faster flux decline during UF. The results also indicated that the algal EOM was negatively charged and the electrostatic repulsion could prevent organics from adhering to membrane surface. In term of fouling mechanisms, cake layer formation, hydrophobic adhesion and pore plugging were the main mechanisms for membrane fouling caused by algal EOM.  相似文献   

4.
Celik E  Liu L  Choi H 《Water research》2011,45(16):5287-5294
The protein fouling of membranes can be related to the hydrophobic and electrostatic interactions between proteins and the membrane material; i.e., protein fouling can be reduced by changing the membrane properties. In this study, multi-walled carbon nanotube/polyethersulfone (C/P) composite membranes were prepared via the phase inversion method in order to investigate protein fouling, with bovine serum albumin (BSA) and ovalbumin (OVA) used as the model protein for assessing the protein fouling behavior. The results show that the C/P composite membranes were fouled less compared to the bare polyethersulfone (PES) membrane at 4 h of static protein adsorption at neutral pH. Moreover, the irreversible fouling ratio of the C/P composite membranes was less than the bare PES membrane after 1 h of protein ultrafiltration, and the flux recovery ratio of the C/P composite membranes was higher than the bare PES membrane after 20 min of DI water filtration. Based on these results, C/P composite membranes were shown to have the potential to alleviate the effects of protein fouling, thereby enabling C/P composite membranes to be used for several runs of protein filtration after simple washing with water.  相似文献   

5.
He Y  Xu P  Li C  Zhang B 《Water research》2005,39(17):4110-4118
The viability of treating high-concentration food wastewater by an anaerobic membrane bioreactor (AMBR) was studied using polyethersulfone (PES) ultrafiltration membranes PES200, PES300, PES500 and PES700 with norminal molecular weight cutoff (MWCO) ranging from 20,000 to 70,000 Da. Hydraulic and solid retention time significantly affected the treatment performance of the AMBR kept at 60 h and 50 days in the study. The four membranes exhibited a similar efficiency in removal of suspended solids, color, chemical oxygen demand (COD) and bacteria. When the volumetric loading rate was below 4.5 kg/m3d, COD removal rate was in the range of 81-94% and the gas yield stabilized at 0.136 m3/kg COD. The effect of membrane properties including MWCO, hydrophobicity and surface morphology on membrane fouling and cleaning was evaluated. The PES200 membranes with the smallest MWCO and smoothest surface exhibited a serious initial flux decline, whereas the PES700 membranes with the largest MWCO and roughest surface were observed related to the highest flux decline and the lowest recoverable flux rate during long-term operation. Membrane autopsy revealed that the significant flux decline was caused by the formation of a thick biofouling layer onto the membrane surfaces.  相似文献   

6.
Uptake kinetics of semi‐volatile organic compounds (SVOCs) present indoors, namely phthalates and halogenated flame retardants (HFRs), were characterized for cellulose‐based cotton and rayon fabrics. Cotton and rayon showed similar accumulation of gas‐ and particle‐phase SVOCs, when normalized to planar surface area. Accumulation was 3–10 times greater by rayon than cotton, when normalized to Brunauer–Emmett–Teller (BET) specific surface area which suggests that cotton could have a longer linear uptake phase than rayon. Linear uptake rates of eight consistently detected HFRs over 56 days of 0.35–0.92 m3/day.dm2 planar surface area and mass transfer coefficients of 1.5–3.8 m/h were statistically similar for cotton and rayon and similar to those for uptake to passive air sampling media. These results suggest air‐side controlled uptake and that, on average, 2 m2 of clothing typically worn by a person would sequester the equivalent of the chemical content in 100 m3 of air per day. Distribution coefficients between fabric and air (K′) ranged from 6.5 to 7.7 (log K′) and were within the range of partition coefficients measured for selected phthalates as reported in the literature. The distribution coefficients were similar for low molecular weight HFRs, and up to two orders of magnitude lower than the equilibrium partition coefficients estimated using the COSMO‐RS model. Based on the COSMO‐RS model, time to reach 95% of equilibrium for PBDEs between fabric and gas‐phase compounds ranged from 0.1 to >10 years for low to high molecular weight HFRs.  相似文献   

7.
Natural organic matter (NOM) plays a significant role in fouling microfiltration membranes in drinking water treatment processes even though the NOM is retained only to a small extent. The aim of this study was to obtain a better understanding of the interactions between the fractional components of NOM and microfiltration membranes. Filtration experiments were performed using 0.22 μm hydrophobic and hydrophilic polyvinylidene fluoride (PVDF) membranes in a stirred-cell system on the NOM isolated from three Australian surface waters. As expected, the fouling rate for the hydrophobic membrane was considerably greater than for the hydrophilic membrane. Focusing on the hydrophobic membrane, it was shown that the high molecular weight fraction of NOM (>30 kDa) was responsible for the major flux decline. Filtration tests on the four fractions of NOM isolated on the basis of hydrophobicity and charge using non-functionalised and anionic resins revealed that the fouling potential for the three waters was hydrophilic neutral>hydrophobic acids>transphilic acids>hydrophilic charged. The low-aromatic hydrophilic neutral compounds were the main determinant of the rate and extent of flux decline. This was linked to the colloidal size fraction (>30 kDa) and to the selective concentration of calcium in the fraction leading to organics-Ca2+ bridging. It was also shown that the higher the aromaticity of the NOM the greater the flux decline, and the aromatics mainly resided in the hydrophobic acids fraction. Overall, the fouling mechanism controlling the flux decline involved the combined effects of adsorptive and colloidal fouling by the hydrophilic neutral fraction in the internal pore structure of the membrane.  相似文献   

8.
This study was conducted to investigate the nitrification of wastewater using polyvinyl alcohol (PVA) media immobilized with nitrifying bacteria. The microorganism‐immobilized media used in this study was prepared by mixing 10% (v/v) PVA, 6% (v/v) polyethylene glycol (PEG) and nitrifying microorganism culture solution. Analysis revealed that the nitrification rate when using the microorganism‐immobilized media increased to 49.1, 80.0 and 83.9% as the filling rate increased to 5, 15 and 25%, respectively. The mass transfer rate of the prepared microorganism‐immobilized media was estimated to be 37.69 mg/L·h maximum. The respiration rate was measured in order to compare with the microorganism‐immobilized media and the conventional biological treatment process of anaerobic‐anoxic‐oxic (A2O). Respiration time of sludge and the media were similar, but the respiration rate of the microorganism‐immobilized media (initial 20.8 mg O2/(L·h)) was higher than that of the activated sludge (initial 12.4 mg O2/(L·h)).  相似文献   

9.
A novel antimicrobial composite of zero‐valent silver nanoparticles (AgNPs), titania (TiO2), and chitosan (CS) was prepared via photochemical deposition of AgNPs on a CS‐TiO2 matrix (AgNPs@CS‐TiO2). Electron microscopy showed that the AgNPs were well dispersed on the CS‐TiO2, with diameters of 6.69‐8.84 nm. X‐ray photoelectron spectra indicated that most of the AgNPs were reduced to metallic Ag. Fourier‐transform infrared spectroscopy indicated that some AgNPs formed a chelate with CS through coordination of Ag+ with the CS amide II groups. The zones of inhibition of AgNPs@CS‐TiO2 for bacteria (Escherichia coli and Staphylococcus epidermidis) and fungi (Aspergillus niger and Penicillium spinulosum) were 6.72‐11.08 and 5.45‐5.77 mm, respectively, and the minimum (critical) concentrations of AgNPs required to inhibit the growth of bacteria and fungi were 7.57 and 16.51 µg‐Ag/mm2, respectively. The removal efficiency of a AgNPs@TiO2‐CS bed filter for bioaerosols (η) increased with the packing depth, and the optimal filter quality (qF) occurred for packing depths of 2‐4 cm (qF = 0.0285‐0.103 Pa?1; η = 57.6%‐98.2%). When AgNPs@TiO2‐CS bed filters were installed in the ventilation systems of hospital wards, up to 88% of bacteria and 97% of fungi were removed within 30 minutes. Consequently, AgNPs@TiO2‐CS has promising potentials in bioaerosol purification.  相似文献   

10.
The research on fouling reduction and permeability loss in membrane bioreactors (MBRs) was carried out at two MBR pilot plants with synthetic and real wastewater. On the one hand, the effect of mechanical cleaning with an abrasive granular material on the performance of a submerged MBR process was tested. Additionally, scanning electron microscopy (SEM) measurements and integrity tests were conducted to check whether the membrane material was damaged by the granulate.The results indicate that the fouling layer formation was significantly reduced by abrasion using the granular material. This technique allowed a long-term operation of more than 600 days at a flux up to 40 L/(m2 h) without chemical cleaning of the membranes. Moreover, it was demonstrated that the membrane bioreactor (MBR) with granulate could be operated with more than 20% higher flux compared to a conventional MBR operation. SEM images and integrity tests showed that in consequence of abrasive cleaning, the granular material left brush marks on the membrane surface, however, the membrane function was not affected.In a parallel experimental set up, the impact of the operationally defined “truly soluble fraction” <0.04 μm from wastewater and activated sludge on the ultrafiltration membrane fouling characteristics was investigated. It was shown that the permeability loss was caused predominantly by the colloidal fraction >0.04 μm rather than by the dissolved fraction of wastewater and activated sludge.  相似文献   

11.
Membrane fouling, the key disadvantage that inevitably occurs continuously in the membrane bioreactor (MBR), baffles the wide-scale application of MBR. Ceramic membrane, which possesses high chemical and thermal resistance, has seldom been used in MBR to treat municipal wastewater. Four ceramic membranes with the same materials but different pore sizes, ranging from 80 to 300 nm, were studied in parallel using four lab-scale submerged MBRs (i.e., one type of ceramic membrane in one MBR). Total COD and ammonia nitrogen removal efficiencies were observed to be consistently above 94.5 and 98%, respectively, in all submerged ceramic membrane bioreactors. The experimental results showed that fouling was mainly affected by membrane’s microstructure, surface roughness and pore sizes. Ceramic membrane with the roughest surface and biggest pore size (300 nm) had the highest fouling potential with respect to the TMP profile. The 80 nm membrane with a smoother surface and relatively uniform smaller pore openings experienced least membrane fouling with respect to TMP increase. The effects of the molecular weight distribution, particle size distribution and other biomass characteristics such as extracellular polymeric substances, zeta potential and capillary suction time, were also investigated in this study. Results showed that no significant differences of these attributes were observed. These observations indicate that the membrane surface properties are the dominant factors leading to different fouling potential in this study.  相似文献   

12.
Her N  Amy G  Park HR  Song M 《Water research》2004,38(6):1427-1438
Occasional algal blooms, comprised of blue-green algae and/or green algae, cause significant challenges in drinking water treatment due to the release of algogenic organic matter (AOM) into water extracellularly and, upon cell lysis, intracellularly. AOM has been extracted from blue-green algae (cyanobacteria) by various means and analyzed by UV absorbance scanning, HPSEC-UV-fluorescence-DOC, UV absorbance ratio index (URI), FTIR, and fluorescence excitation emission matrix (EEM). AOM extracted in water as a solvent exhibited a high hydrophilic fraction (57.3%) with a low SUVA (1.0 L/m-mg). The molecular weight (MW) distribution showed a significant heterogeneity (high value of polydispersivity) and high protein content (as indicated by specific fluorescence). Significant amounts of proteinaceous components such as mycosporine-like amino acids (MAAs, UV-screening components) and phycobilins (light-harvesting pigment) were detected by UV/visible absorption. The presence of proteins was confirmed by FTIR (at 1661 and 1552 cm(-1)), EEM spectra (EX:278-282 nm and EM:304-353 nm), and high URI values (3.1-6.0). A bench-scale cross-flow unit, employing a flat-sheet membrane specimen, was used to examine nanofiltration (NF) membrane fouling and removal of natural organic matter (NOM) derived from different blends of Suwannee River humic acid (SRHA) and AOM: SRHA 10 mgC/L, AOM 3mg C/L + SRHA 7 mgC/L, AOM 7 mgC/L + SRHA 3 mgC/L, and AOM 10 mgC/L. The study focused mainly on the effects of two different sources of organic matter on NF (NF 200) membrane fouling under otherwise similar conditions. Flux decline and organic matter rejection as a function of delivered DOC (cumulative mass of feed DOC per unit area) showed significantly different results depending on the organic matter composition of samples even though the test conditions were the same (organic matter concentration, pH, temperature, inorganic salt composition and concentration, and recovery). A higher flux decline was observed with increasing proportions of AOM. Organic matter rejections also decreased with higher AOM contributions to the samples, indicating that lower molecular weight (MW) AOM components were not well rejected by the NF 200 membrane having a 360 Da MWCO. However, SRHA that exhibited a relatively high MW (1000-5000 Da range) and high SUVA (7.4 L/m-mg) was preferentially rejected through electrostatic repulsion/size exclusion by the NF 200 membrane, having a high negative charge, low MWCO, and relatively low hydrophobicity. Even though the DOC concentration of feed water is a decisive factor for membrane fouling along with membrane properties and operating conditions, the characteristics of organic matter are more influential in fouling potential. Protein-like and polysaccharide-like substances were found as major foulants by FTIR.  相似文献   

13.
Lee N  Amy G  Croué JP  Buisson H 《Water research》2004,38(20):4511-4523
An understanding of natural organic matter (NOM) as a membrane foulant and the behavior of NOM components in low-pressure membrane fouling are needed to provide a basis for appropriate selection and operation of membrane technology for drinking water treatment. Fouling by NOM was investigated by employing several innovative chemical and morphological analyses.

Source (feed) waters with a high hydrophilic (HPI) fraction content of NOM resulted in significant flux decline. Macromolecules of a relatively hydrophilic character (e.g. polysaccharides) were effectively rejected by low-pressure membranes, suggesting that macromolecular compounds and/or colloidal organic matter in the hydrophilic NOM fraction may be a problematic foulant of low-pressure membranes. Moreover, the significant organic fouling that is contributed by polysaccharides and/or proteins in macromolecular and/or colloidal forms depends on molecular shape (structure) as well as size (i.e. molecular weight). More significant flux decline was observed in microfiltration (MF) compared to ultrafiltration (UF) membrane filtration. MF membrane fouling may be caused by pore blockage associated with large (macromolecular) hydrophilic molecules and/or organic colloids. In the case of UF membranes, the flux decline may be caused by sequential or simultaneous processes of surface (gel layer) coverage during filtration. Morphological analyses support the notion that membrane roughness may be considered as a more important factor in membrane fouling by controlling interaction between molecules and the membrane surface, compared to the hydrophobic/hydrophilic character of membranes. Membrane fouling mechanisms are not only a function of membrane type (MF versus UF) but also depend on source (feed) water characteristics.  相似文献   


14.
In the present investigation, performance of various laccase-membrane reactor configurations including direct enzyme contact, enzyme impregnated, immobilized enzyme and a reactor system based on laccase immobilization in chitosan membranes for decolorization of azo dye (acid black 10 BX) were examined using laccase enzyme purified from white rot fungi Pleurotus ostreatus 1804. A five-step laccase purification procedure was employed, which improved the enzymatic activity by 8.27 folds. Laccase was confirmed by comparing with the standard marker using SDS-PAGE electrophoresis, which showed molecular weight of 63 kDa. Experimental data showed that laccase has great potential for color removal without addition of external redox mediators. Various process parameters viz. aqueous phase of pH 6.0, enzyme concentration of 1.75 U/ml, dye concentration of 20 mg/L, temperature of 30 °C and reaction time of 120 min were optimized to achieve maximum decolorization efficiencies. Moreover, different laccase-membrane reactor configurations were tested to determine the efficacy of repeated application of laccase on dye decolorization process. Among the different reactor configurations employed, laccase encapsulated in chitosan membrane showed advantages such as short-term contact period and reusability of enzyme for a number of cycles.  相似文献   

15.
In open‐channel flows with submerged vegetation, the vertical velocity profile can often be described by two layers: the vegetation layer in the lower region and the surface layer in the upper non‐vegetated region. In this paper, a new mixing‐length scale of eddy is proposed for predicting the vertical velocity profile of flow in an open‐channel with submerged rigid vegetation. The analytical model of velocity profile is based on the momentum equation of flow where the turbulent eddy viscosity is assumed to have a linear relationship with the local velocity. The proposed model was tested against different datasets from the literature. The 22 datasets used cover a range of submergence [flow depth (H)/vegetation height (h) = 1.25 ~ 3.38], different vegetation densities of ah = 0.11 ~ 1.85 (a defined as the frontal area of the vegetation per unit volume) and bed slopes (So = 1.8 × 10?6 ~4.0 × 10?3). This study showed that the proposed model can predict the velocity profiles well against all datasets, and that the mixing length scale of eddies (λ) is well related with both vegetation height (h) and flow depth of surface layer (i.e. the height of non‐vegetation layer, Hh). Close examination of λ in the proposed model showed that when λ = 0.03, the model predicts vertical velocity profiles well for all datasets used except for very shallow submergence (i.e. H/h < 1.5).  相似文献   

16.
Multi-walled carbon nanotube/polyethersulfone (C/P) blend membranes were synthesized via the phase inversion method. The resultant membranes were then characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and contact angle. The C/P blend membranes appeared to be more hydrophilic, with a higher pure water flux than the polyethersulfone (PES) membranes. It was also found that the amount of multi-walled carbon nanotubes (MWCNTs) in the blend membranes was an important factor affecting the morphology and permeation properties of the membranes. After 24 h of surface water filtration with 7 mgC/L TOC content, the C/P blend membranes displayed a higher flux and slower fouling rate than the PES membranes. Subsequent analyses of the desorbed foulants showed that the amount of foulant on bare PES membranes was 63% higher than the C/P blend membrane for 2% MWCNTs content. Thus, the carbon nanotube content of the C/P membranes was shown to alleviate the membrane fouling caused by natural water.  相似文献   

17.
Little is known about the geographic variation and determinants of bacterial endotoxin and β ‐(1,3)‐d ‐glucan in Danish house dust. In a population of 317 children, we: (i) described loads and concentrations of floor dust, endotoxin, and β‐(1→3)‐d ‐glucan and (ii) their correlations and (iii) assessed their determinants; (iv) Finally, we compared our findings with previous European studies. Bedroom floor dust was analyzed for endotoxin content by the kinetic limulus amoebocyte lysate assay and for β‐(1→3)‐d ‐glucan by the inhibition enzyme immunoassay. The parents answered questions regarding potential determinants. We found: geometric means (geometric standard deviations) 186 mg/m2 (4.3) for dust; 5.46 × 103EU/m2 (8.0) and 31.1 × 103EU/g (2.6) for endotoxin; and 142 μg/m2 (14.3) and 0.71 × 103 μg/g (7.3) for β‐(1→3)‐d ‐glucan. High correlations (> 0.75) were found between floor dust and endotoxin and β‐(1→3)‐d ‐glucan loads, while endotoxin and β‐(1→3)‐d ‐glucan concentrations were moderately correlated (= 0.36–0.41) with the dust load. Having a carpet was positively associated with dust load and with endotoxin and β‐(1→3)‐d ‐glucan concentrations. Pet keeping, dwelling type, and dwelling location were determinants of endotoxin concentrations. No other determinants were associated with β‐(1→3)‐d ‐glucan concentrations. Compared with other European studies, we found lower β‐(1→3)‐d ‐glucan loads and concentrations but higher endotoxin loads and concentrations suggesting a geographically determined different composition of Danish floor dust compared with other European regions.  相似文献   

18.
Membrane filtration of four phenyl-urea herbicides (linuron, diuron, chlortoluron, and isoproturon) dissolved in ultrapure water was studied in a laboratory cross-flow device in batch concentration mode (with recycling of the retentate stream). Three UF (MWCO of 20 000, 5000 and 2000 Da) and three NF (MWCO of 150-300 Da) membranes were used. The influence of the main operating conditions (transmembrane pressure, tangential velocity, temperature, pH, and MWCO of the membranes) on the steady-state permeate fluxes and the retention factors of the phenyl-ureas was evaluated. The herbicide mass adsorbed onto the membranes was also determined, and the contribution of the fouling resistance to the total resistance to permeate flux was much lower than the inherent resistance of the clean membranes.  相似文献   

19.
She Q  Jin X  Li Q  Tang CY 《Water research》2012,46(7):2478-2486
Osmotically driven membrane processes, such as forward osmosis (FO) and pressure retarded osmosis (PRO), are attracting increasing interest in research and applications in environment and energy related fields. In this study, we systematically investigated the alginate fouling on an osmotic membrane during FO operation using four types of draw solutions (NaCl, MgCl2, CaCl2 and Ca(NO3)2) to elucidate the relationships between reverse (from draw solution to feed solution) and forward (from feed solution to draw solution) solute diffusion, and membrane fouling. At the same water flux level (achieved by adjusting the draw solution concentration), the greatest reverse solute diffusion rate was observed for NaCl draw solution, followed by Ca(NO3)2 draw solution, and then CaCl2 draw solution and MgCl2 draw solution, the order of which was consistent with that of their solute permeability coefficients. Moreover, the reverse solute diffusion of draw solute (especially divalent cation) can change the feed solution chemistry and thus enhance membrane fouling by alginate, the extent of which is related to the rate of the reverse draw solute diffusion and its ability to interact with the foulant. The extent of fouling for the four types of draw solution followed an order of Ca(NO3)2 > CaCl2 >> MgCl2 > NaCl. On the other hand, the rate of forward diffusion of feed solute (e.g., Na+) was in turn promoted under severe membrane fouling in active layer facing draw solution orientation, which may be attributed to the fouling enhanced concentration polarization (pore clogging enhanced ICP and cake enhanced concentration polarization). The enhanced concentration polarization can lead to additional water flux reduction and is an important mechanism governing the water flux behavior during FO membrane fouling. Findings have significant implications for the draw solution selection and membrane fouling control in osmotically driven membrane processes.  相似文献   

20.
An innovative submerged membrane electro-bioreactor (SMEBR) was built to reduce membrane fouling through a combination of various electrokinetic processes. The objective of this research was to assess the capability of SMEBR to reduce fouling under different process conditions. At the bench scale level, using synthetic wastewater, membrane fouling of the SMEBR was compared to the fouling of a membrane bioreactor (MBR) in five runs. Different protein concentrations in the influent synthetic wastewater were selected to develop different membrane fouling potentials: high (240 mg/l), low (80 mg/l) and zero protein addition. The MBR and SMEBR were operated at a flux equal to the membrane critical flux in order to create high fouling rate conditions. Membrane fouling rate, expressed as the change in the trans-membrane pressure per day (kPa/d), decreased in the SMEBR 5.8 times (standard deviation (SD) = 2.4) for high protein wastewater, 5.1 times (SD = 2.4) for low protein content, and 1.3 times (SD = 0.7) for zero protein, when compared to the MBR. The supernatant concentrations of the soluble microbial products (SMP) were 195–210, 65–135 and less than 65 mg/l in respective experimental series. Following the bench scale study, membrane fouling was assessed in a pilot scale SMEBR, fed with raw un-clarified municipal wastewater, and operated under real-sewage variable quality conditions. The pilot SMEBR exhibited three times smaller membrane fouling rate than the MBR. It was concluded that electrokinetic processes generated by SMEBR led to a reduction of membrane fouling through: i) removal of soluble microbial products (mainly protein and polysaccharides) and colloidal organic materials; ii) change of the structure and morphology of the suspended solids due their conditioning by DC field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号