首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
  相似文献   

2.
    
The interface shear strength involving geosynthetics and other materials can be influenced by various parameters, such as the material type and the normal stress on the interface. Although several investigations have been conducted over the years on this topic, the large variation of interfaces that can be used has led researchers to develop other sources of information to improve design methods. This paper investigates how roughness parameters can influence the shear strength developed between different interfaces based on many inclined plane tests and microscopic analyses of the surface roughness. One smooth and three textured geomembranes were used to simulate a barrier layer and sand, and two nonwoven geotextiles were installed on them to simulate drainage or protective layers. A powerful optical apparatus provided fifteen bidimensional and tridimensional surface parameters for the two faces of the analyzed geomembranes. The results showed that the mean height of profile elements (Rc) and the core material volume (Vmc) parameters presented stronger correlations with the interface shear strength. The concept of interface roughness factor was introduced to estimate the interface friction between different materials based on the materials properties for interfaces with geotextiles.  相似文献   

3.
Interface shear strength between soil and geosynthetics mainly depends on the mechanical and physical properties of soil, geosynthetics and the normal stress acting at the interface. This paper presents results of an extensive experimental investigation carried out on sand-geosynthetic interface using modified large direct shear box. The study focusses on the shearing mechanism at the sand-geosynthetic interface and the effect of different parameters on the shearing mechanism. Smooth HDPE geomembrane, nonwoven needle punched geotextile and two types of sand having different mean particle size, have been used in the present study. Microstructural investigation of deformed specimen through Field Emission Scanning Electron Microscope (FESEM) reveals the shearing mechanism which includes interlocking and fiber stretching for sand-geotextile while sliding, indentation and plowing for sand-geomembrane interface. The shearing mechanism for sand-geomembrane interface highly depends on the normal stress and degree of saturation of sand. The critical normal stress that demarcates the sliding and plowing mechanism for sand-geomembrane interface is different for dry and wet sand. The amount of scouring (or plowing) of the geomembrane surface reduces with increase in the mean particle size of sand. FESEM images revealed that the sand particles get adhered to the geotextile fibers for tests involving wet sands. The present microstructural study aided in understanding the shearing mechanism at sand-geosynthetic interface to a large extent.  相似文献   

4.
In this study, large-size direct shear tests were conducted to determine the interfacial shear characteristics of sand–geotextile under three different normal stresses. The geotextiles used in the present study were hybrid needlepunched nonwovens containing defined weight proportions of jute and polypropylene fibers. Subsequently, the interfacial shear characteristics of hybrid and that of a nonwoven geotextile consisting of solely polypropylene fibers with sand were compared and analyzed under different normal stresses. Initial higher shear stiffness of sand-polypropylene geotextiles was observed corresponding to sand-hybrid geotextiles specifically under higher normal stresses. Nevertheless, the contact efficiency of sand-hybrid nonwovens was similar to that of sand-polypropylene geotextiles. The surface morphology of sand particles has been investigated based on the images obtained from scanning electron microscopy (SEM) and quantitatively analyzed by means of Wadell roundness and degree of angularity methods.  相似文献   

5.
To provide an accurate response of Geocells under pull-out conditions such as what happened in retained backfills, interfacial characteristics of Geocell-backfill are required. A series of direct shear tests was carried out to investigate influence of soil physical properties on interfacial properties of Geocell-reinforced granular soils. Variable parameters encompass poorly graded coarse-grained soils with different medium particles sizes (3, 6 and 12?mm), different normal stresses (100, 200 and 300?kPa) and different relative densities (50 and 70%). To compare the developed strength of the shear plane, in unreinforced and Geocell-reinforced statuses, shear characteristics mobilized at the shear plane including friction angle, dilation angle and apparent cohesion have been evaluated. The results indicated improvement of the interface's shear strength characteristics due to the presence of Geocell. The shear strength in the Geocell-soil interface was increased by increasing the medium grain size and relative density of the soil. From the obtained results, for coarse aggregates (cell aspect ratio-ratio of Geocell's cells diameter (b) to the medium grains size (D50)- smaller than 8.5), Geocell reinforcement was two times, at least, more successful than compaction effort, in improving shear characteristics of the unreinforced medium dense fill materials. It has been recommended using Geocells in environments with low normal stress and coarse aggregates. Furthermore, the results clarify that Geocell with cell aspect ratio equal to 4, has the best performance in improvement of interface's shear strength.  相似文献   

6.
Mine owners and operators are presented today with a diverse range of geosynthetic products which all appear to provide similar benefits. Key factors in selecting geosynthetics for use in the mining industry include construction and operational durability issues such as slope stability, puncture resistance and resistance to weathering; but also their chemical resistance when they come into contact with the extreme liquors present on many mining operations and processes. The long-term performance of the geosynthetic depends largely on the type of polymer used in the manufacture, or in the case of geosynthetic clay liners (GCLs), also on the mineralogy and chemical make of the bentonite present in the GCL. This paper provides a guide to the characteristics of the leachates/liquors likely to be generated for a given mining process and the likely effect it will have on the performance of a given geosynthetic.  相似文献   

7.
Using a modified direct shear apparatus, an extensive experimental investigation is conducted into the influence of the inherent anisotropy of sand on the mobilization of the peak and critical state friction angles as well as the maximum dilation angle of the interfaces between an inherently anisotropic crushed sand and two woven geotextiles, one nonwoven geotextile, and one geomembrane. Experimental findings confirm that both peak and maximum dilation angles of sand-geosynthetic interfaces are affected from soil inherent anisotropy depending on the bedding plane inclination with respect to the shear plane. However, a unique critical state (residual) friction angle is attained for each interface type irrespective of the bedding plane inclination angle. Compiling results of a total of 141 tests, it is shown that a unique rule describes stress-dilation relationship of four different dense crushed sand-geosynthetic interfaces. The experimental data indicate that the ?p vs. θ and ψmax vs. θ curves are symmetrical with respect to θ?=?90° for the sand-woven geotextile and sand-geomembrane interfaces. Finally, it is shown that a constitutive equation by Pietruszczak and Mroz (2001) can predict the variation of ?p with θ for the sand-woven geotextile and sand-geomembrane interfaces.  相似文献   

8.
9.
The durability of five 1.5-mm thick geomembranes (GMBs) is investigated in pH 0.5 and 13.5 synthetic mining solutions using immersion tests. Two high density polyethylene (HDPE), two linear low density polyethylene (LLDPE), and one blended polyethylene (BPO) GMBs are investigated at 85 °C for incubation durations of 4.5–6.5 years. It is shown that the degradation of all five GMBs in the high pH solution is faster than in the low pH solution. In the pH 0.5 solution, one of the HDPEs and the BPO GMBs exhibited polymer degradation before or at the time of the depletion of their antioxidants. In pH 13.5, four out of the five GMBs exhibited degradation and followed the conceptual three-stage degradation model until nominal failure. However, there is no correlation between the long-term performance of these GMBs and their resin type or their initial properties since one of the examined LLDPEs outperformed all the higher density/crystallinity GMBs with higher initial properties while the other LLDPE did not perform well. Thus, when selecting a GMB for a desired application, the relative performance of different candidate GMBs can be only assessed using immersion tests using the solutions expected in the field.  相似文献   

10.
Composite geotextiles with polyester yarn reinforcement have been commonly used in combination with unsaturated soils. Both unsaturated and saturated shear strength of the interfaces were investigated between a composite geotextile and three major types of materials: silty sand (SM), low-plasticity silt (ML) and high-plasticity clay (CH) in a direct shear box. The interfaces were formed using two methods (A and B) to reflect the wide range of possible contact conditions in practice. Method A involved statically compacting the soil directly on top of the composite geotextile, while for Method B, the soil was statically compacted in a separate mold and later brought into contact with the composite geotextile. Type B interfaces required a larger displacement to mobilize the shear strength than Type A interfaces. The ultimate failure envelopes of SM and ML soils were similar to those of their interface shearing. Notably, the failure envelopes for the clay-geotextile interface of both types were higher than that of clay alone. The unsaturated soil-only shearing had a higher peak strength and tended to dilate more than saturated soil-only shearing, while unsaturated soil-interface shearing appeared to be more contractant than saturated interface shearing. The strength variations with suction for all tested soils and interface shearing were clearly non-linear. A new model that takes account of the condition of soil-geotextile contact intimacy is proposed for predicting the variation of interface strength with suction, based on the variation of the soil's apparent cohesion with suction and the geotextile-water retention curve.  相似文献   

11.
    
The internal shear strength of a geosynthetic clay liner (GCL) within composite liner systems is crucial for the stability of landfills and should be carefully considered in the design. To explore the shear strength and failure mechanism of the extensively used needle-punched GCL, a series of displacement-controlled direct shear tests with five normal stress levels (250–1000 kPa) and eight displacement rates (1–200 mm/min) were conducted. The shear stress to horizontal displacement relationships exhibit well-defined peak shear strengths and significant post-peak strength reductions. The monitoring results of the thickness change indicate that the degree of volumetric contraction is related to the reorientation of fibers and dissipation of pore water pressure. Furthermore, the peak and residual shear strengths both depend on the displacement rate because of the rate-dependent tensile stiffness of needle-punched fibers and shear strength of the soil/geosynthetic interface. Through additional tests and lateral comparison, it was discovered that the shear behavior of sodium bentonite, degree of hydration, and pore water pressures all affect the shear mechanisms of the NP GCL. In particular, the failure mode transfers from fiber pullout to fiber rupture with the increase in water content as the hydrated bentonite particles facilitate the stretching of needle-punched fibers.  相似文献   

12.
    
Some of the main applications of geosynthetics include use as a hydraulic barrier in sanitary landfills, as a reinforcement element and in pavement engineering. In most cases, these materials are subject to the overlapping effects of tensile strength and puncture. This paper presents a review of indirect methods for calculation of stress and strain averages by means of the California Bearing Ratio (CBR) puncture strength test. In addition, a new calculation method is proposed based on the Kirchhoff plate theory, which interprets the behavior of thin circular plates subjected to a uniform normal loading. This new method enables analysis of the stress-strain in each stretch of the geosynthetic. The methodology is applied to four woven geotextiles of different weights. The results of the new calculation method yielded a better stress-strain correlation with direct tensile strength tests, presenting the smallest relative errors compared to the other indirect calculations reviewed. With the aid of a disk and pins, vertical displacement values at different points in the geotextiles were measured and showed good agreement with analytical predictions. Therefore, the static puncture test combined with the new proposed calculation method is a good alternative for determining the stress-strain parameters of geotextile.  相似文献   

13.
土工织物拉拔试验接触面的蠕变研究   总被引:3,自引:0,他引:3  
本文研究接触面的长期蠕变对土工织物拉拔试验中筋材的拉应力以及剪应力沿筋材长度方向的变化影响。对接触面蠕变采用非衰减蠕变模型 ,根据筋材的受力特性给出了微分控制方程 ,采用对应原理近似方法得出粘弹性解。对几个关键参数进行分析并与长期拉拔试验结果进行了比较 ,研究结果表明 ,本文的方法与试验结果吻合较好。  相似文献   

14.
Numerical modelling approaches can aid in designing geotechnical constructions involving geosynthetics. However, the reliability of numerical results depends on how the model is developed, the constitutive model, and the set of parameters used. By comparing the numerical results with experiment, the present work verifies a numerical modelling technique developed to model multilayered geosynthetic lining systems for landfills. The numerical modelling technique involves strain softening at interfaces and allows the axial stiffness of the geosynthetics to evolve as a function of strain. This work focuses on a two-dimensional finite-difference model, which is used to simulate three types of experimental tests: conventional uniaxial tensile tests, direct shear tests, and a large-scale test that was used to assess the overall mechanical behaviour of a reinforced geosynthetic system that spanned over a cavity. This reinforced geosynthetic system consisted of a 50 kN/m polyvinyl alcohol geogrid reinforcement embedded in a layer of sand, a geosynthetic clay liner, a high-density polyethylene geomembrane, and a non-woven needle-punched geotextile. The uniaxial tensile tests, direct shear tests, and the large-scale test were numerically modelled and the numerical results were compared with experimental results. The results of the numerical modelling technique presented very closely match the results of the three experimental tests, which indicates that the numerical model correctly predicted the measured data.  相似文献   

15.
Various geosynthetics for reinforcement, protection and encapsulation are widely applied to civil structures and waste landfill sites. The use of geosynthetics inevitably involves the coupled behaviors of different materials which include large displacement and strain-softening behaviors, etc. Current research indicates that the behavior of geosynthetic–soil systems depend on the shear strength of the interface governed by several intrinsic and environmental factors, such as moisture, normal stress, chemical conditions, and thermal components, etc.In this study, the effects of acidity and basicity from leachate and waste are intensively considered in order to build up the chemical reaction mechanism of the shear strength of the interface under cyclic loading based on an experimental inspection. The Multi-Purpose Interface Apparatus (M-PIA) has been newly manufactured, and cyclic direct shear tests for submerged geosynthetic–soil specimens under different chemical conditions have been performed. A Focused Ion Beam (FIB) analysis has also been performed to induce the reason for the variation in the disturbance function and to verify the hypothesis on the decay-proof ability of geosynthetics.Consequently, a new approach to reflect the chemical effect of geosynthetics has been applied by suggesting the use of new disturbance function parameters in the Disturbed State Concept. The basic schematic of the Disturbed State Concept (DSC) constitutive model is employed; then, new disturbance function parameters are proposed to describe the chemical degradation of the geosynthetic–soil interface under dynamic conditions. Furthermore, based on the FIB results, it is be deduced that the variation in the disturbance function mainly results from the different types of decay in the soil minerals.  相似文献   

16.
State of the practice review of heap leach pad design issues   总被引:1,自引:0,他引:1  
The authors present a summary of the state of the practice of containment design in copper and gold heap leaching, focusing on recent advancements and how these applications differ from the more conventional landfill design practices. Advancements both within the Americas and worldwide are presented, including consideration of increasing heap depths, which are now approaching 150 m (with ore densities generally in the range of 1500–1800 kg/m3). Liner system performance under these pressures will be reviewed, including the latest developments in drainage pipe performance testing. The authors will also explore the recently emerging technology of using concentrated sulfuric acid pre-curing for copper ores and the related compatibility issues with conventional geomembrane materials.  相似文献   

17.
This paper presents the results of experimental investigations and constitutive modeling of cyclic interface shearing between HDPE geomembrane and cohesionless sandy gravel. A series of cyclic interface shear tests was performed using a large-scale cyclic shear apparatus with servo controlled system. Particular attention was paid to the influences of the amount of shear-displacement amplitude, number of cycles, shear rate and the normal pressure on the mechanical response. The experimental results show that the path of the shear stress against the cyclic shear displacement is strongly non-linear and forms a closed hysteresis loop, which is pressure dependent, but almost independent of the shear rate. For small shear-displacement amplitudes, the obtained damping ratio is significantly greater than zero, which is different to the behavior usually observed for cyclic soil to soil shearing. In order to describe the pressure dependency of the hysteresis loop using a single set of constitutive parameters, new approximation functions are put forward and embedded into the concept of the Masing rule. Further, a new empirical function is proposed for the damping ratios to capture the experimental data for both small and large cyclic shear-displacement amplitudes. The included model parameters are easy to calibrate and the new functions may also be useful in developing enhanced constitutive models for the simulation of the cyclic interface shear behavior between other geosynthetics and soils.  相似文献   

18.
  总被引:2,自引:0,他引:2  
To investigate the shear strength of root–geomat reinforced soil (RMS), direct shear tests were conducted in laboratory on soil samples cultivated with three–dimensional geomats and Bermuda grass. The test results showed that the shear strength of RMS could be significantly improved by the combined reinforcement with grass roots and geomats, particularly at a low vertical stress level. The shear strength increment was increased exponentially with the total reinforcement content of roots and geomats. Concurrently, the soil cohesion was significantly increased, but the influence on the friction angle was generally negligible. With the increase in root or geomat content and decrease in water content, both the soil shear strength and cohesion were remarkably increased. Owing to the higher tensile strength of geomat than that of roots, the effect of geomat content on shear strength was larger than that of root content. Furthermore, the shear strength increment caused by root–geomat reinforcement was larger than the sum of the respective increments caused by root and geomat. Moreover, the soil shear strength and cohesion increments induced by the combined root–geomat mutual interlocking effect were increased exponentially with the total reinforcement content.  相似文献   

19.
Apart from other factors, the performance of geosynthetic reinforced soil structures depends also on the characteristics and behavior of the interface between soil and geosynthetic. Experiments were conducted in a direct shear test apparatus to study the shear force–displacement behavior at the soil–geotextile interface using two differently textured woven geotextiles. Analyzing the data so obtained a non-linear constitutive model has been presented for predicting both the pre-peak and the post-peak interface behavior. The predictions made by the developed model are found to be in good agreement with experimental data obtained from direct shear tests.  相似文献   

20.
In this paper, series of three-dimensional (3-d) numerical modeling of geosynthetic-encased granular columns were performed both in model and prototype scale using FLAC3D software to understand the lateral load carrying capacity of ordinary and geosynthetic encased granular columns (OGC and EGC). In the first part of the study, numerical modeling of direct shear tests were carried out. The soil in the direct shear box was reinforced with two different diameters of granular columns (50 mm and 100 mm) and three different patterns of arrangement (single, triangular and square) to study the effect of group confinement. The numerical simulations were carried out at four different confining pressures namely 15, 30, 45 and 75 kPa. From the numerical simulations it was observed that higher shear stresses are mobilized inside the granular column due to geosynthetic encasement and the magnitude of shear stress increases with increase in the normal pressure. It was found that the tensile forces in the geosynthetic encasement were mobilized both in circumferential and vertical directions, which helps in mobilizing additional confinement in the granular column. In the second part, the influence of the geosynthetic encasement of granular column treated soft ground was demonstrated through 3-dimensional slope stability analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号