首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
海域试开采区域含水合物沉积物的粒度分析结果表明水合物沉积物骨架由粗、细颗粒混合构成,通过开展多组低温、高压三轴排水剪切试验研究细颗粒含量和密度对含甲烷水合物沉积物和无水合物沉积物的强度和变形特性的影响。试验结果表明,含水合物沉积物抗剪强度及剪胀性都随细粒含量提高而显著增强。这是由于细颗粒含量增加改变了颗粒间水合物的样貌和分布特征,形成了由水合物包裹着粗颗粒-细颗粒的团簇状集合体。然而,细颗粒含量对无水合物沉积物的强度和变形特性的影响却表现出相反趋势。另外,含水合物沉积物的剪胀关系可以使用修正剑桥模型中的剪胀关系式进行描述。结果表明,剪胀关系的拟合曲线依赖于水合物饱和度的大小。通过对比研究发现,天然水合物和实验室合成水合物试样在较高饱和度时的峰值摩擦角大小及其伴随水合物饱和度的增长趋势存在差异,这种差异主要来源于水合物在沉积物骨架颗粒孔隙中不同的赋存模式及分布特征。  相似文献   

2.
The effects of particle shape and size distribution on the constitutive behavior of composite soils with a wide range of particle size were investigated. Two comparable sets of specimens were prepared: (1) mixtures of fines (clay and silt) and an ideal coarse fraction (glass sand and beads), and (2) mixtures of fines and natural coarse fraction (river sand and crushed granite gravels). Direct shear box testing was undertaken on 34 samples and the structure of the shear surfaces, change in volume and water content and the particle shape coefficient of the sheared specimens were examined. The results indicate that the contraction/dilation a specimen exhibits is restrained within the shear zone while the outer zones remain unchanged during shearing. An increased coarse fraction leads to an increase in constant volume shear strength. In addition, increasing elongation or decreasing convexity of the coarse fraction increases the constant volume friction angle. The overall roughness of the shear surface at constant volume state is negatively related to particle smoothness (convexity) and positively related to the area of the shear surface occupied by particles with particular shapes. Two equations are proposed for the estimation of constant volume friction angle based on the proportion and shape coefficient of the coarse fraction. It is hoped this will assist in considering the shear strength of mixed soils when the size of the coarse fraction makes laboratory testing difficult.  相似文献   

3.
A series of triaxial tests has been carried out on the mechanical properties and dissociation characteristics of sands containing methane hydrate using an innovative high pressure apparatus which has been developed to reproduce the in-situ conditions expected during proposed methane extraction methods. It was found that the strength of MH sand increased with MH saturation due to particle bonding. Dissociation by heating caused large axial strains for samples with an initial shear stress and total collapse for samples consolidated in the metastable zone. In the case of dissociation by de-pressurization, axial strains were generated by increasing effective stress until a stable equilibrium was reached. However, re-pressurization led to the collapse in the metastable zone.  相似文献   

4.
The influence of particle shape on the mechanical behavior of sand-woven geotextile interfaces over a wide domain of soil density and normal stress is studied. A uniformly graded angular fine sand, and a blend of well rounded glass beads with identical particle size distributions, were selected as granular material. Experiments revealed the impact of particle shape on peak and residual friction angles as well as the maximum dilation angle of interfaces between both granular media and woven geotextile. It was observed that the residual friction angles of interfaces between angular sand/glass-beads and woven geotextile are very similar to the residual friction angles of angular sand and glass-beads in soil–soil direct shear test. It is understood that the peak friction angle and maximum dilation angle of angular sand-woven geotextile were slightly lower than corresponding values for angular sand in soil–soil direct shear test. While the peak friction angle and maximum dilation angle of angular sand-woven geotextile interface decrease with the increase in normal stress, experiments showed that these factors are insensitive to normal stress for glass beads-woven geotextile interfaces, at least for the range studied herein. All interfaces with woven geotextile as the contact surface exhibit an abrupt loss of shear strength in the post-peak regime of behavior. Finally, a unified stress-dilation law for the angular sand-woven geotextile, glass beads-woven geotextile, and angular sand-roughened steel interfaces is obtained.  相似文献   

5.
粉粒含量对砂土强度特性的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
对含无塑性粉粒的砂土进行了三轴固结不排水试验,结果显示:粉粒含量通过颗粒组成和结构对粉砂强度和变形产生重要影响。在粉粒含量为6%,9%和12%时,松散试样在100 kPa围压下出现了静态液化现象,而粉粒含量增至15%时该现象消失,且随着围压的增大该现象也消失;在同一粉粒含量下,粉砂土残余内摩擦角高于峰值内摩擦角,但残余偏应力值很小,这是由于孔压增长很大,抵消了内摩擦角由?p′提高到?r′的有利影响;稳态线也受粉粒含量的影响,表现在随着粉粒含量的增加,稳态线逐渐向下移动;各粉细砂强度和变形对围压的敏感性强于纯净砂;粉粒含量对孔隙比的影响是含量超出一定值后才变得显著的,这说明粉粒加入到砂骨架中时,并未全部充填至砂粒孔隙中,而是以砂粒间接触点或面上为主,这样的接触结构导致了粉砂具有高体缩性,由此使得粉砂样表现出典型的应变软化特征。  相似文献   

6.
颗粒形状对砂土抗剪强度及桩端阻力影响机制试验研究   总被引:5,自引:0,他引:5  
 为研究颗粒形状对砂土的力学及变形性质的影响,以3种不同颗粒形状的均粒砂及相似材料“玻璃球”为研究对象,通过光学显微镜获取颗粒数字图像,借助图形处理系统获取颗粒单元体几何参数,定义构建2种不同层次的形状描述指标(球形度、磨圆度),并通过计算机辅助程序完成颗粒形状参数的量化。通过4种颗粒材料直剪试验,获得临界摩擦角、剪胀角及峰值摩擦角等强度指标,并分析其随颗粒形状参数的变化,通过饱和试样在不同密实度、不同离心加速度下的静力触探测试来模拟不同砂土地基上的中等圆形闭口桩静压贯入过程,并探讨桩端阻力随颗粒形状的变化关系。直剪试验结果表明:在矿物组分相同的情况下,砂土临界摩擦角随颗粒的磨圆度和规则性的增加呈线性减小,剪胀性随颗粒的不规则性的增大而增大,并可通过修正的Bolton公式来量化表述形状系数对于峰值摩擦角的作用。离心试验结果表明:静力触探锥端阻力可直接用于桩端阻力(qb)的估算,具有很好的可信度,砂颗粒形状越偏离标准球状,表面棱角度越突出,桩贯入所受阻力越大,桩端承载力越高。通过理论分析,提出一种迭代计算方法,并量化分析桩端阻力(qb)、相对密度(Dr)、应力水平(?v′)和颗粒形状(?)四者的相互作用关系,该方法计算结果与试验实测数据具有良好的吻合度。  相似文献   

7.
In the Mohr-Coulomb criterion, the shear strength of sands is typically characterized by the internal friction angle, which depends on many factors such as grain size and distribution, the mineralogical origin of the particles, particle shape, unit weight, geological history, cementation, saturation, and overburden pressure. In this study, the empirical relationships among three particle shape indices, different fractal dimension definitions, and internal friction angles were investigated. Within this context, direct shear tests were conducted on 38 different types of sands from different origins and with various grain sizes. For each type of sand, image analyses were performed to find out the roundness, sphericity, regularity parameters belonging to individual grains. Additionally, several statistics of these parameters for different types of sands were determined. The results revealed that particle shape has a limited effect on the friction angle of sands in comparison to grain size distribution. Furthermore, it was found that decreasing regularity in particle shape caused an increase in the internal friction angle of uniform sands. These findings agree with the empirical relationship between the internal friction angle and particle shape suggested in the literature.  相似文献   

8.
The viscous properties of a variety of poorly graded unbound granular materials were investigated by direct shear tests on 12 cm-cubic specimens. A number of natural sands having different particle shapes and sizes as well as uniform glass beads having different particle sizes were used. The viscous properties were evaluated by changing the shear displacement rate many times during otherwise monotonic loading (ML) at constant shear displacement rate and normal pressure. Creep loadings were performed in two tests. Different types of viscous properties, which are affected by the particle shape but essentially independent of the particle size, are reported. The viscosity type varies as the shear displacement increases from the pre-peak regime towards the residual state. A new viscosity type, called “Positive & Negative”, was found with relatively round granular materials in the pre-peak regime and with relatively angular granular materials in the post-peak softening regime and at the residual state. Peculiar “rate-independent unstable behaviour” is observed with round natural sands and glass beads in the post-peak regime, which is more significant and frequent with glass beads. Controlled by the particle size, this behaviour is caused by the so-called stick/slip phenomenon. The viscous properties observed in the DS tests are quantified by the rate-sensitivity coefficient defined in terms of the shear and normal stresses, which are then converted to those defined in terms of the major and minor principal stresses, β13. These β13 values are consistent with those directly obtained by the triaxial and plane strain compression tests. The effects of particle size on the β13 value are negligible and the β13 value tends to decrease as the particle shape becomes more round.  相似文献   

9.
针对平面应变条件下各向异性砂土剪切带角度的试验规律,采用传统的3种理论和分叉理论进行对比分析。将平面应变条件下剪切带角度的试验结果按照传统3种理论整理发现,尽管传统3种理论可以估算同种砂剪切带角度的极小、中间和极大值,但无法解释其各向异性规律。砂土在平面应变条件下破坏时会产生明显的剪切带,当剪切带方向和砂土沉积面方向接近时,会较早诱发剪切带的产生,使材料强度降低,造成了平面应变条件下各向异性强度规律明显不同于常规三轴条件下的试验规律,采用分叉理论结合各向异性模型则可以有效解释这个规律。随砂土沉积面角度的变化,模型可以从细观角度解释常规三轴条件下剪切带角度的单调变化的试验规律,结合分叉理论可以描述平面应变条件下其先减小然后增大的规律。通过几种理论对比分析表明,模型结合分叉理论不但能够描述多种应力状态下的平面应变和常规三轴应力条件下剪切带角度表现的不同规律,而且能够从细观角度解释其各向异性成因。  相似文献   

10.
针对传统砂土本构理论无法合理解析剪破角随初始围压增加而减少这一试验规律的局限性,采用材料状态相关砂土临界状态本构模型对Hostun砂进行了应变局部化分析。首先基于已有的材料状态相关砂土临界状态概念,将Pietruszczak等所提出的砂土本构模型进行了改进,并利用Hostun砂的有关三轴排水试验结果对模型参数进行了拟合,然后对Hostun砂的平面应变排水试验进行了应变局部化分析。分析结果表明:基于材料状态相关的砂土临界状态模型能够合理地描述材料初始状态对砂土变形局部化的影响,尤其是初始有效围压对剪破角的影响。  相似文献   

11.
This paper describes the results of geotechnical and geochemical laboratory tests, carried out on dune sands from northern KwaZulu-Natal, to which increasing percentages of fines (<63 µm) were added. The geotechnical tests detail the effects of the fines content on a number of properties of the dune sands, such as the permeability, maximum dry density and shear strength. The peak shear strength and dry density of the dune sands occurs when 20–30% fines were added, whilst the permeability was seen to decrease continuously with increasing fines. Compaction of the samples was seen to significantly increase the shear strength of the dune sands together with a corresponding decrease in the permeability. The results from these tests enabled slope stability analysis to be carried out. Typical fines used in the geotechnical tests were analyzed by XRD, and the clays were isolated and their morphology studied using a transmission electron microscope (TEM). Fines identified include kaolinite, quartz, montmorillonite, calcite, feldspars, iron-oxides and illite. The fines content of the dunes sands has been shown to profoundly effect the geotechnical properties of the dune sands.  相似文献   

12.
为研究砂石改良膨胀土工程特性随砂石粒径的变化规律,通过直剪试验、收缩试验、膨胀力试验、无荷膨胀率试验,分析了膨胀土抗剪强度、胀缩特性与砂石掺量、砂石粒径的关系。试验结果表明:随着砂石掺量增加,膨胀土的抗剪强度有所提高,内摩擦角增大,黏聚力先增大后减小,膨胀土的胀缩特性逐渐改善,相同掺量下,掺砂石的粒径越大,膨胀土的黏聚力和内摩擦角越大,胀缩特性改善效果越明显,掺入砂石粒径越大,胀缩特性得到改善并趋于稳定的砂石掺量越小,最优砂石掺量逐渐减小。建议不同粒径砂石改良膨胀土的最优掺量分别为:风化细砂40%,风化中砂30%,碎石25%。掺大粒径的砂石改良膨胀土更加经济有效。  相似文献   

13.
A series of undrained, cyclic simple shear tests were performed on reconstituted specimens with various clay contents to study the effects of clay content on liquefaction characteristics of clayey sands based on a framework of an idealized binary packing model and intergrain state parameters. From observed liquefaction characteristics, clayey sands with different clay contents can be grouped as sand-like or clay-like soils depending on the clay content and the transitional fines content of the sand-clay mixture. A simple equation is derived and verified to correlate the transitional fines content with the void ratios of the clean sand and the pure clay consisting of the mixture. In addition, a new relationship for clay content correction is proposed based on the linear relationship between the cyclic resistance ratio and the clay content at the same intergranular void ratio. The cyclic resistance ratio of sand-like clayey sands can be divided into two components: (1) the resistance of the sand skeleton at the specific intergranular void ratio, and (2) the increment of cyclic resistance from clayey fines. The rate of increment for cyclic resistance varies with the properties of contained clay particles. Data from three independent studies have shown the proposed procedure is promising.  相似文献   

14.
利用离散元法对结构性砂土的三轴试验进行了三维数值模拟并对其宏观特性进行了分析。首先将考虑胶结尺寸(宽度和厚度)的三维胶结接触模型导入离散元软件PFC3D中,对结构性砂土数值试样进行三轴试验数值模拟;然后对比分析离散元模拟与室内试验结果;最后从宏观力学角度对试验结果进行了分析。离散元模拟结果表明:结构性砂土与无胶结松散砂土表现不同,其在低围压时表现出应变软化和体积剪胀特征,并随胶结含量的增加或围压的减少而愈发显著,在高围压时则呈应变硬化和体积剪缩现象;低平均应力时,随胶结含量的增加,试样峰值内摩擦角、黏聚力以及内摩擦角均增加,其中黏聚力增加较为明显,随着平均应力的增加,峰值强度包线逐渐趋向于无胶结土。  相似文献   

15.
节理充填对节理力学性质具有重要影响,为研究砂粒充填对节理抗剪强度的影响,利用GCTS(RDS-200型)岩石剪切系统对4种粒径砂粒充填的粉晶大理岩节理进行了直剪试验。结果表明:未充填节理剪切应力-位移全程曲线可分为压缩阶段、弹性阶段、屈服阶段、软化阶段和残余阶段,而充填节理剪切应力-位移全程曲线则仅有压缩阶段和硬化阶段,表现出松砂剪切曲线特征;相同法向应力下,4种粒径砂粒充填节理峰值剪切应力明显降低。多层铺设3种较细粒径砂粒的充填对节理粘聚力和内摩擦角的影响基本相同,粘聚力和内摩擦角均降低,且粘聚力降低更为明显;单层铺设的最大粒径砂粒使节理的粘聚力降低,内摩擦角增加。研究结论对理解充填节理岩体稳定性具有一定帮助。  相似文献   

16.
In the ancient railway sub-structure in France, after years of operation, the inter-penetration of fine particles of sub-grade and ballast has created a new layer referred to as the interlayer. As it was naturally formed, the fines content and water content of the interlayer vary considerably. In this study, the effects of the fines and water contents on the mechanical behavior of interlayer soil were investigated by carrying out large-scale monotonic and cyclic triaxial tests. The results of the monotonic triaxial tests show that adding more fines in the interlayer soil does not significantly change the shear strength in the dry condition (water content w=4% and 6%), but drastically decreases the shear strength parameters (friction angle and cohesion) in the nearly saturated condition (w=12%). The cyclic triaxial tests were performed at various deviator stress levels. By considering the permanent axial strain at the end of application of each stress level, it was found that the higher the fines content in the nearly saturated condition (w=12%), the larger the permanent axial strain. In the case of lower water content (w=4% and 6%), the opposite trend was identified: adding fines decreases the permanent axial strain.  相似文献   

17.
《Soils and Foundations》2019,59(5):1280-1291
This study focuses on the impact of relative density on the bearing capacity of unsaturated sand using both theoretical predictions and measurements from physical modeling tests. The theoretical predictions incorporate the effective stress, quantified using the suction stress concept and friction angles obtained from direct shear tests on unsaturated sand specimens at different relative densities and degrees of saturation, into conventional bearing capacity equations. The suction stress values inferred from the failure envelopes were found to match well with values predicted from the soil-water retention curves for sands with different relative densities. Moreover, the bearing capacity values measured in physical modeling experiments involving loading of a circular footing atop unsaturated silty sand layers having different initial degrees of saturation matched well with the predicted bearing capacity values from an effective-stress based model. As expected, the bearing capacity was greater for soils with increasing relative density, but an interesting observation is that a transition from general to local shear failure occurred at a certain combination of relative density and degree of saturation. For the silty sand tested, this transition occurred at a relative density of 0% for degrees of saturation between 4 and 16% and at a relative density of 40% for degrees of saturation between 30 and 90%. General shear failure was always observed at relative densities of 70 and 90%.  相似文献   

18.
循环流动特性是剪胀性砂土液化变形的典型特征,为研究液化循环流动土体的动力剪切特性,在骨架相对密实度分别为35%、50%和80%的砂土中添加不同含量的细颗粒,以改变液化流动土体的重度,通过循环扭剪试验研究不同骨架密度、具有不同细粒含量的液化流动土体在大变形阶段的剪切模量及阻尼比的变化规律。试验结果表明:液化循环流动土体在流动大变形阶段仍具有一定的模量,模量随着应变的增大而逐渐减小;流动变形阶段的模量大小与液化土体的重度基本无关;强度恢复阶段模量与细粒含量及骨架相对密实度密切相关;液化大变形阶段卸载模量趋于稳定,其稳定值约为初始卸载模量的35%;阻尼比随剪应变的增大而先增大,当土体达到初始液化以后,阻尼比随剪应变的发展呈减小的变化趋势;对于相同骨架密度的土体,相变角随着细粒含量的增加而减小,临界状态线的斜率随着细粒含量的而增加而增大。  相似文献   

19.
确定体积应变局部化区域对于涉及孔隙流体的地质灾害研究具有重要意义。体积应变局部化区域可能比最大剪切应变局部化区域更接近于孕灾地点。在单轴压缩位移控制加载条件下,测试了3个湿砂样(含水率为12.7%~17.1%)的应力-纵向应变曲线,在微裂纹出现之前及稍后,利用自主开发的基于粒子群优化的数字图像相关(DIC)方法计算了砂样的局部体积应变的变化规律。研究发现,在加载过程中,局部体积应变由均匀分布(近似线性阶段)向不均匀分布(硬化阶段)转变,直至出现局部体积应变局部化现象。在剪切带切向上,和最大剪切应变的相对均匀分布相比,局部体积应变的分布具有多峰性,这应与周期性的微裂纹出现有关。在微裂纹出现稍前,剪切带的变形是以膨胀为主,剪切带已较为显著,带内的最大剪切应变和局部体积应变分别比带外多2倍和4倍,但在此前,剪切带的膨胀和收缩现象共存。计算了所有测点所围区域的整体体积应变随纵向应变的演变规律。基于DIC方法的整体体积应变计算方法的优越性在于:具有亚像素精度,考虑了应变二阶量的影响。  相似文献   

20.
《Soils and Foundations》2002,42(6):65-78
Characteristics of the maximum and minimum void ratios of sands and their possible use for material characterization have been investigated in this study. Data of over 300 natural sandy soils including clean sands, sands with fines and sands containing small amount of clay-size particles have been used to examine the influence of fines, grain-size composition and particle shape on emax, emin and void ratio range (emax - emin). A set of empirical correlations are presented which clearly demonstrate the link between these void ratios and material properties of sands. The key advantage of (emax - emin) over-conventional material parameters such as Fc and D50 is that (emax - emin) is indicative of the overall grain-size composition and particle characteristics of a given sand and that it shows off the combined influence of relevant material factors. The void ratio range provides a general basis for comparative evaluation of material properties over the entire range of cohesionless soils.Important issues related to the laboratory procedures used for determination of emax and emin as well as their applicability to fines-containing sands are also addressed. Three distinct linear correlations were found to exist between emax and emin for clean sands, sands with 5-15% fines and sands with 15-30% fines respectively, thus illustrating that the standard JGS procedures for minimum and maximum densities of sands can provide reasonably consistent emax and emin values for sands with fines content of up to 30%. The importance of the grain-size distribution and presence of gaps in the grading of composite soils or mixtures of sands with fines produced in the laboratory is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号