首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
以朝东岩隧道为背景,运用二维弹塑性分析研究了隧道侧面45°和正侧面不同大小、不同距离的溶洞分布对隧道围岩稳定性的影响。研究结果表明:隧道侧面溶洞随距离的增大,围岩稳定性增强,距离与隧道开挖引起的释放位移之间存在明显的相关关系,影响的分界线大约在溶洞尺寸的2~3倍;在拱顶附近的周边释放位移比底部的释放位移大。同时隧道侧面的溶洞容易引起隧道开挖过程中的偏压现象,隧道整体向溶洞一侧发生释放位移。  相似文献   

2.
为了研究开挖顺序和布置形式对底部结构巷道群稳定性的影响,借用三维FLAC3D数值计算软件,结合大冶铁矿-180 m阶段底部出矿结构巷道群的工程实例,分析了交叉型巷道群围岩由于不同的开挖顺序而产生不同的应力状态、位移变形以及塑性屈服变化特征;对比了不同布置形式的底部结构在开挖影响下的稳定性.结果表明:交叉型巷道的应力、变形分布与开挖扰动的顺序和布置形式相关,开挖顺序和布置形式不同,巷道围岩的应力、位移变化程度有明显的差别;交替式开挖顺序对底部结构巷道群围岩的扰动程度最小;对称布置的底部结构在施工形成过程中表现的稳定性更高;依据上述研究结论,指导了大冶铁矿底部结构设计和施工顺序,同时对类似矿山具有借鉴意义.  相似文献   

3.
深部巷道围岩分区破裂三维地质力学模型试验研究   总被引:13,自引:3,他引:10  
 为模拟分区破裂的产生条件和破裂机制,以淮南矿区丁集煤矿深部巷道为工程背景,通过相似材料三维地质力学模型试验再现深部巷道围岩分区破裂的形成过程,通过多种测试手段获得巷道围岩内部的应变和位移呈现波峰和波谷间隔分布的波浪形变化规律,从巷道围岩的破裂现象及其应变和位移的变化规律,有效揭示深部巷道围岩分区破裂的形成条件和破坏规律,为深入研究深部巷道围岩的非线性变形破坏机制奠定坚实的试验基础。  相似文献   

4.
由于断层带附近应力集中和围岩破碎严重给巷道断面布设和维护带来巨大安全隐患,需及时掌握断层附近地应力分布和围岩破裂形式及其对周边巷道稳定性影响。选取淮南某矿逆断层上、下盘进行试验,利用MTS试验系统配合声发射测试初始地应力场和岩石破裂方式,经ANSYS对比分析不同应力条件下逆断层附近巷道稳定性。经岩石力学试验发现,砂岩破坏后尺度较小、AE事件数较多,泥岩破坏后尺度较大、AE事件数较少。由地应力实测可知,逆断层附近以构造应力为主,上盘岩层挤压使得下盘总体受力偏大。开挖后巷道周边次生应力在一定范围内出现了应力跌落区,跌落区范围和围岩裂隙发育范围接近。同时,伴随着应力跌落的范围扩大、初始应力减小,岩层开始移动剧烈和围岩破裂范围扩大。由围岩塑性分布和岩层移动可知,调整后主应力有助于提高巷道稳定性。以上研究结果,以期为复杂埋藏环境下矿山巷道的布设和支护问题,提供一定的施工技术依据。  相似文献   

5.
为探讨各因素对深部巷道卸压孔与锚杆联合支护的影响机制,利用岩石破裂过程分析系统RFPA2D-Dynamic模拟了巷道支护模型在动力扰动作用下围岩应力场的分布规律、巷道破坏形态特征。通过分析得到动静组合加载下不同侧压的巷道围岩应力重分布的一般规律,并从破坏单元声发射能量释放的角度分析了动静组合加载对围岩的损伤效应。研究指出,侧压系数λ是静态和动态扰动作用下巷道围岩应力重分布的主控因素;高围压条件下,动力扰动成为触发巷道破裂失稳的主要诱因,且动力扰动作用对不同围压的巷道围岩破坏形态的影响各不相同。  相似文献   

6.
为了研究软岩巷道围岩矿压显现规律,采用FLAC~(3D)数值软件模拟不同侧压系数下,巷道围岩应力、位移和塑性区的变化规律,结果表明:由于侧压系数的不同,巷道开挖后在巷道底板和两帮拐角处出现应力集中,并在两帮中间位置出现了拉应力,最大拉应力为0.013 2 MPa;随着侧压系数的增加,巷道的水平位移大于垂直位移且偏帮严重;整个巷道塑性破坏明显,塑性区主要分布在巷道顶板上0.8 m左右和底板下1 m左右,说明巷道围岩自稳能力差,需要采取支护手段,为研究巷道矿压显现规律提供参考。  相似文献   

7.
直墙拱形巷道围岩在剪切波作用下会发生不同程度的破坏,通过直墙拱形巷道围岩的相似材料模型振动台实验与数值计算方法,共同研究了直墙拱形巷道围岩在剪切波作用下的受力及破坏规律。研究表明:剪切波作用下,直墙拱形巷道围岩在墙角处形成应力集中现象,直墙拱形巷道围岩的墙角底板和拱帮位置最容易积累损伤,直墙拱形巷道容易发生墙角处开裂破坏和直墙局部塌落破坏,且墙角处的的裂缝位置和方向对其他部位裂缝位置有着明显的影响,即直墙拱形巷道墙角处的裂缝由剪切波作用产生,巷道其他部位的裂缝的出现受到墙角处的裂缝和剪切波共同作用产生。  相似文献   

8.
随着我国交通运输业的快速发展和科学技术的日益革新,隧道方案如今在全国范围内得到广泛应用,大量隧道穿越岩溶地区,岩溶隧道在我国西南地区十分常见,极易发生突水突泥灾害。在系统收集整理了国内外关于岩溶隧道的资料与文献后,分析了溶洞位置、形状对隧道围岩应力、变形和位移的影响,讨论了溶洞间距对开挖段围岩的影响,分析了含不同类型充填物岩溶的失稳特性。总结得出,溶洞分布位置的不同对隧道围岩的主应力及塑性区影响较大,溶洞的大小和与隧道间的间距对围岩的竖向沉降影响较大,而充填物中黏土含量越高,岩溶管道发生破坏所需的水力梯度也就越大。同时,分析了目前修建岩溶隧道的不足之处,如在数值模拟研究过程中,没有考虑围岩工程性质和结构变化的影响,在今后的研究中应更加符合实际的工程情况来开展,并对未来的发展方向进行猜想与规划,对今后在岩溶地区施工遇到同类情况起到参考借鉴作用,以降低隧道开挖及后期运营过程中的安全风险。  相似文献   

9.
在世界最大跨度的白鹤滩水电站右岸地下厂房开挖过程中,位移监测揭示0+076 m~0+133 m洞段正顶拱距开挖面17~26 m的围岩存在持续、缓慢的"深层变形",变形量级整体达35~55 mm,且0~17 m不同深度测点出现同步等速位移增量,成为了施工期反馈分析最为关注的岩石力学问题。在介绍厂房顶拱位移监测布置和监测成果基础上,通过多点位移计监测成果的GoCAD插值直观展示了围岩变形的空间分布特征,说明了顶拱围岩变形模式的特殊性;然后,结合FLAC3D数值分析,探讨了洞室群围岩应力集中、破裂扩展和时效变形的分布特征,诠释了"深层变形"的成因机理,并且通过围岩破坏现象和密集准分布式光栅光纤位移监测进行了验证;最后,对该洞段顶拱围岩稳定性进行了评价。研究表明,厂房顶拱上方锚固洞底板浅层围岩应力集中程度大于岩石启裂强度,浅层岩体的破裂扩展造成了围岩时效变形,使得埋设于锚固洞底板松弛圈的多点位移计安装基座端产生抬动,间接造成多点位移计不同深度测点产生同步等速位移增量,从而表现出所谓的"深层变形"现象。研究成果为顶拱围岩异常监测变形的产生机制提供了合理解释,也为顶拱围岩稳定性评价提供了技术支撑。  相似文献   

10.
针对高应力大直径圆筒形洞室出现的岩爆、喷层开裂和钢绞线弹出等变形破坏现象,通过现场破坏调查、岩体位移和锚索应力监测,详细说明了围岩变形破坏的发展演化过程,并通过钻孔摄像观测了围岩内部破裂特征,进而总结了围岩变形破坏的演化模式。通过数值模拟揭示了洞室围岩变形破坏机制,并提出了合理的支护建议。高应力大直径圆筒型洞室变形破坏是一个链动灾害过程,围岩内部开裂导致了岩体位移和锚索荷载增加,锚索荷载超限时钢绞线断裂弹出,失去约束的洞壁围岩和喷层在卸荷作用下鼓胀开裂。高初始地应力和开挖后诱发的应力集中,玄武岩起裂强度低,临近洞室开挖诱发应力叠加,应力集中区支护强度较弱等综合因素导致了围岩内部开裂的产生。在洞室围岩应力集中区设置足够的预应力长锚索和合理的张拉力,可以有效减弱围岩内部破裂深度和程度。  相似文献   

11.
岩溶隧道施工围岩变形动态监测与仿真分析   总被引:6,自引:1,他引:5  
 岩溶区隧道因受岩溶发育程度、岩溶位置等影响,其围岩位移特征与一般隧道存在较大区别。以达成高速铁路宝石岩隧道为工程背景,对侧部含有溶洞的隧道围岩变形进行现场监测研究,并运用有限差分软件FLAC3D进行仿真分析,现场监测和仿真分析所得围岩变形规律基本一致。结果表明:隧道开挖后,围岩分别向溶洞和隧道内变形,溶洞与隧道之间的围岩向两个相反的方向变形,是较危险区域;靠近溶洞的隧道左侧特征位置的位移值要比远离溶洞的隧道右侧相应部位的位移值大,其中,左边墙的水平位移是右边墙的2倍左右。随着开挖断面处溶洞尺寸的逐渐增大,拱顶下沉位移增量最大,边墙水平位移增量次之,腰拱水平位移增量最小。溶洞顶部下沉位移和靠近隧道的溶洞右侧部水平位移较大,溶洞其他部位的位移值较小。侧部含有溶洞的隧道,其围岩变形的非对称性容易使隧道受“偏压”。所得结论可为同类隧道的设计、施工和研究提供有益的借鉴和参考。  相似文献   

12.
侧部岩溶隧道围岩稳定性数值分析与研究   总被引:4,自引:2,他引:2  
 结合忠垫高速公路岩溶隧道施工过程,利用有限差分软件FLAC3D对侧部含有溶洞的隧道围岩稳定性进行数值模拟研究,并将数值计算结果与现场监测结果进行比较分析。结果表明:隧道开挖后,围岩分别向溶洞内和隧道内变形,溶洞与隧道之间的围岩向2个相反的方向变形,是较危险区域。围岩塑性区主要集中在隧道的周围和溶洞的左右侧部,溶洞的顶部和底部处塑性区较少。隧道与溶洞之间的围岩由于应力集中可能使围岩产生过大的变形和岩体破坏,对其稳定性要给予特别重视。所得结论可为同类隧道的设计、施工和研究提供有益的借鉴和参考。  相似文献   

13.
岩溶隧道承压隐伏溶洞突水模型试验与数值分析   总被引:1,自引:0,他引:1  
为研究不同充填水压条件下隐伏溶洞对隧道围岩稳定性的影响,进而揭示溶洞突水致灾机理,利用自主研发的大型三维流固耦合模型试验系统,针对强充填滞后型溶洞突水孕灾模式开展了试验研究,揭示了承压溶洞突水过程位移、应力及渗压的变化规律,综合模型试验与数值计算各自的优势,开展了不同充填水压下(0.4~1.1 MPa)隧道开挖过程流固耦合数值模拟,对模型试验结果进行补充验证。研究结果表明:溶洞影响范围主要集中于一倍洞径范围内,受溶洞影响普通围岩的应力水平及应力释放量均高于隔水岩体,孔隙水压力消散速度较大,位移变化相对平稳;在隧道开挖阶段,随着溶洞充填水压增大,隔水岩体应力释放率越低,渗透压力整体升高,上升梯度逐渐减小,当溶洞水压高于0.8 MPa时,位移出现明显异常;模型试验水压加载阶段真实再现了隔水岩体破裂突涌水过程,研究结果对于岩溶隧道施工过程突水灾害防控具有指导意义。  相似文献   

14.
侧部岩溶隧道围岩与支护结构力学特性分析   总被引:2,自引:0,他引:2  
岩溶区隧道因受岩溶的影响,其围岩与支护结构力学特性与一般隧道存在较大区别.以忠垫高速公路某岩溶隧道为背景,采用三维快速拉格朗日法,对侧部岩溶隧道施工过程中的围岩位移、应力、塑性区和锚杆轴力及喷混凝土层力学特性进行研究,并将计算结果与现场监测结果进行了比较分析.结果表明,隧道开挖后,围岩分别向溶洞和隧道内变形,溶洞与隧道之间的围岩向两个相反的方向变形.塑性区主要集中在隧道的周围和溶洞的左右侧部.隧道与溶洞之间的围岩应力集中程度较高.靠近溶洞侧的锚杆轴力及喷混凝土层轴力和弯矩要比其他位置的相应值都要大.  相似文献   

15.
岩溶区隧道因受岩溶发育程度的影响,其围岩位移特征与一般隧道存在较大区别。以宜万铁路某岩溶隧道为工程背景,对侧部含有溶洞的隧道施工过程中的围岩位移特征进行了相似模型试验和现场测试。结果表明:隧道开挖后,围岩分别向溶洞内和隧道内变形,溶洞与隧道之间的围岩向两个相反的方向变形,是最危险区域。靠近溶洞附近的边墙、拱肩和拱顶处围岩的位移值要比远离溶洞侧的相应部位处的围岩位移值大。研究结论对岩溶隧道的设计与施工具有一定的参考价值。  相似文献   

16.
隧道顶部溶洞对围岩稳定性的影响分析   总被引:7,自引:2,他引:5  
结合夏家庙隧道实际工程,运用ANSYS有限元软件研究了隧道顶部不同大小、不同距离的溶洞分布对隧道围岩稳定性的影响,并与现场实测数据进行对比分析.研究结果表明:隧道顶部溶洞大小和距离的变化对隧道顶底板主应力将产生明显的影响,对隧道围岩拱顶下沉亦有明显影响,数值模拟结果与现场监测结果基本吻合.  相似文献   

17.
岩溶尺寸对隧道围岩稳定性影响的模型试验研究   总被引:15,自引:4,他引:15  
利用公路隧道结构与围岩综合试验系统,对石灰岩地区大断面隧道开挖过程中,不同大小溶洞对隧道围岩稳定性的影响进行相似模型试验研究,并运用ANSYS软件进行了弹塑性有限元数值分析:三维动态施工过程模拟与试验结果均表明,溶洞对围岩的变形有较大影响,随着溶洞尺寸的增加,开挖前的围岩先期位移和开挖瞬间的释放位移均有较大幅度的增长,同时,溶洞区的开挖对无溶洞区的围岩变形有放大作用。  相似文献   

18.
特大型岩溶地段隧道爆破数值模拟研究   总被引:1,自引:0,他引:1  
为研究特大型岩溶地段爆破施工对隧道及溶洞结构稳定性产生的影响,提高隧道爆破施工的安全性,结合那丘隧道特大型溶洞地段工程,运用MIDAS软件对爆破动荷载作用下隧道的稳定性进行数值模拟研究。从应力、位移、速度三个方面分析得出:(1)在爆破荷作用下,隧道拱顶、拱脚及溶洞顶壁发生应力集中现象;(2)隧道拱顶竖向峰值位移为7.51 mm,溶洞顶壁峰值位移为2.46 mm;(3)隧道围岩质点峰值速度出现在拱顶为17.45 cm/s,溶洞围岩质点速度从顶壁峰值9.81 cm/s向左逐步衰减,左侧岩壁影响很小;(4)依据以上特征提出重点支护区域,同时将现场监测与岩石动力学理论研究相结合,提出那丘隧道爆破施工安全振速标准。  相似文献   

19.
许冬丽  於汝山 《土工基础》2006,20(6):47-50,69
1前言平寨坝址为拟建黔中水利枢纽工程的比选坝址之一。钻探揭露显示,钻孔遇洞率高,线岩溶率为0.9~13.60%,综合平均线岩溶率为6.6%,由于岩体中发育各种岩溶形态,破坏了岩体的完整性,使局部岩体架空呈架空结构。在大坝及库水作用下,局部将因应力集中而破坏。因此,有必要在建坝之  相似文献   

20.
以安徽繁昌县凤凰山危岩溶洞项部岩体爆破为研究背景,采用数值模拟方法对未爆洞顶残留岩体在爆破产生的冲击荷载作用下进行稳定性分析,得出不同时间残留岩体的应力状态和位移变化情况,为施工设计提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号