首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The paper presents results of an investigation conducted to study the impact resistance of steel fibre reinforced concrete containing fibres of mixed aspect ratio. An experimental investigation was planned in which 108 plain concrete and SFRC beam specimens of size 100 × 100 × 500 mm were tested under impact loading. The specimen incorporated three different volume fractions i.e. 1.0%, 1.5% and 2.0% of corrugated steel fibres. Each volume fraction incorporated mixed steel fibres of size 0.6 × 2.0 × 25 mm and 0.6 × 2.0 × 50 mm in different proportions. The drop weight type impact tests were conducted on the test specimens and the number of blows of the hammer required to induce first visible crack and ultimate failure of the specimen were recorded. The results are presented in terms of number of blows required as well as impact energy at first crack and ultimate failure. It has been observed that concrete containing 100% long fibres at 2.0% volume fraction gave the best performance under impact loading.  相似文献   

2.
This paper presents the results of the first phase of a study on the effect of the confinement provided by transverse carbon fiber reinforced polymer (CFRP) sheets on the fatigue bond strength of steel reinforcing bars in concrete beams. Reinforced concrete bond-beams 150 × 250 × 2000 mm were tested. The variables examined were the area of the CFRP sheets (none or one U-wrap CFRP sheet), the reinforcing bar diameter (20 or 25 mm) and the load range applied to the specimens. The results showed that increasing the bar diameter increased the fatigue bond strength for the unwrapped beams. The CFRP sheets increased the bond strength of the bond-beams with 20 mm bars. However, for the beams with 25 mm steel bars the failure mode changed from a bond splitting failure for the unwrapped beams to a diagonal shear failure for the CFRP wrapped beams, and there was little increase in fatigue strength. Finally, the bond failure mechanism for repeated loading is described.  相似文献   

3.
This paper presents the results of an experimental program to investigate the effect of high temperature on the performance of concrete externally confined with FRP sheets. For this purpose, a two-phase experimental program was conducted. In the first phase, 42 standard 100 × 200 mm concrete cylinders were prepared. Out of these specimens, 14 cylinders were left unwrapped; 14 specimens were wrapped with one layer of CFRP sheet; and the remaining 14 specimens were wrapped with one layer of GFRP sheet. Some of the unconfined and FRP-confined specimens were exposed to room temperature; whereas, other cylinders were exposed to heating regime of 100 °C and 200 °C for a period of 1, 2 or 3 h. After high temperature exposure, specimens were tested under uniaxial compression till failure. The test results demonstrated that at a temperature of 100 °C (a little more than the glass transition temperature (Tg) of the epoxy resin), both CFRP- and GFRP-wrapped specimens experienced small loss in strength resulting from melting of epoxy. This loss of strength was more pronounced when the temperature reached 200 °C. In the second phase of the experimental program, three 100 × 100 × 650 mm concrete prisms were prepared and then overlaid by one layer of CFRP and GFRP laminates for conducting pull-off strength tests as per ASTM D4541 – 09. The objective of this testing was to evaluate the degradation in bond strength between FRP and concrete substrate when exposed to elevated temperature environments. One prism was exposed to room temperature whereas the other two specimens were exposed to heating regime of 100 °C and 200 °C for a period of 3 h. It was concluded that a significant degradation in the bond strength occurred at a temperature of 200 °C especially for CFRP-overlaid specimens.  相似文献   

4.
The concrete filled steel tubular (CFST) members become very popular in the construction industry and, at the same time, aging of structures and member deterioration are often reported. The actions like implementation of new materials and strengthening techniques become essential to combat this problem. This research work aimed to investigate the structural improvements of CFST sections with normal strength concrete externally bonded with fibre reinforced polymer (FRP) composites. For this study, compact mild steel tubes were used with the main variable being FRP characteristics. Carbon fibre reinforced polymer (CFRP) fabrics were used as horizontal strips (lateral ties) with several other parameters such as the number of layers, width and spacing of strips. Among thirty specimens, twenty seven were externally bonded with 50 mm width of CFRP strips with a spacing of 20 mm, 30 mm and 40 mm and the remaining three specimens were unbonded. Experiments were undertaken until column failure to fully understand the influence of FRP characteristics on the compressive behaviour of square CFST sections including their failure modes, axial stress–strain behaviour, and load carrying capapcity. From the test results, it was found that the external bonding of CFRP strips provides external confinement pressure effectively and delays the local buckling of steel tube and also improves the load carrying capacity further. Finally, an analytical model was proposed herein for predicting the axial load carrying capacity of strengthened CFST sections under compression.  相似文献   

5.
The effectiveness of strengthening reinforced concrete (RC) beams with prestressed near-surface mounted (NSM) carbon fiber reinforced polymer (CFRP) rods was investigated. Four RC beams (254 mm deep by 152 mm wide by 3500 mm long) were tested under monotonic loading. One beam was kept un-strengthened as a control beam. One beam was strengthened with a non-prestressed NSM CFRP rod. Two beams were strengthened with prestressed NSM CFRP rods stressed to 40% and 60% of the rod’s ultimate strength. The test results showed that strengthening with non-prestressed NSM CFRP rod enhanced the flexural response of the beam compared to that of the control beam. A remarkable improvement in the response was obtained when the RC beams were strengthened with prestressed (40% and 60%) NSM CFRP rods. An increase up to 90% in the yield load and a 79% in the ultimate load compared to those of the control beam were obtained. An analytical model was developed using sectional analysis method to predict the flexural response of RC beams strengthened with prestressed NSM CFRP rods. The proposed model showed excellent agreement with the experimental results.  相似文献   

6.
Over the last several decades, various approaches to strengthening steel structures through the use of Carbon fibre reinforced polymer (CFRP) composites have been investigated; however, most of the studies have been focused on the steel tubes. This paper presents the feasibility analysis on the application of CFRP composite strips to strengthen the CFST column member under axial loading. CFRP strips having a width of 50 mm were used to confine the columns. The experimental parameters were the spacing between the CFRP strips (20 and 30 mm) and number of CFRP layers (one, two and three layers). All columns were tested under axial compression until failure. The experimental results revealed that bonding of CFRP composites effectively delayed the local buckling of the columns and also reduced the axial deformation by providing a confinement/restraining effect against the elastic deformation at both spacings. The confinement effect provided by CFRP composites was increased with the increase in the number of layers; however, the enhancement in buckling stress was not proportional. The load carrying capacity of the column increased with the application of CFRP strips, by up to 30% compared to the of un-strengthened column. From the test results it is suggested that the application of CFRP strips at a spacing of 20 mm or 30 mm is suitable for strengthening of a CFST circular column member; however, the application of strips at intervals of 30 mm recommended as an economical approach to strengthening compared to the 20 mm spacing. Finally, an analytical equation was proposed to predict the load carrying capacity of the CFRP strengthened CFST column, and the average difference between the calculated and experimental value was only ±5%.  相似文献   

7.
Abstract

This paper presents a new strengthening technique for square-reinforced concrete (RC) columns by circularisation with reactive powder concrete (RPC) and wrapping with fibre-reinforced polymer (FRP). RC column specimens were tested, divided into four groups of four specimens based on the strengthening technique: four reference square specimens (150?mm side length) without any strengthening, four were wrapped with two layers of carbon fibre-reinforced polymer (CFRP) and the remaining eight were strengthened by changing the square cross-section to a 240?mm diameter circle with RPC jacket. Four of the RPC jacketed specimens were left unwrapped, while the last four were wrapped with two layers of CFRP. From each group, one specimen was tested under concentric axial load, two were tested under eccentric axial load and one was tested under four-point bending. It was found that using the RPC for circularisation and strengthening of existing square RC columns is an effective technique to significantly increase their axial carrying capacity, ultimate flexural load and energy absorption. Wrapping the circularised RC columns with CFRP prevented the failure of the RPC jacket at the corners of the existing square RC columns under the axial load, and improved the ultimate load as well as the energy absorption of the circularised RC columns.  相似文献   

8.
Glass fibre-reinforced polymer (GFRP) tubes are compared to steel spiral reinforcement in circular concrete members with longitudinal reinforcement and prestressing, using six beam tests. Two 324 mm diameter and 4.2 m long prestressed specimens were tested in bending. Four 219 mm diameter reinforced specimens were also tested, including two 2.43 m long beams tested in bending and two 0.6 m long beams tested in shear. In each set, one specimen was essentially a concrete-filled GFRP tube, while the other control specimen included steel spiral reinforcement of comparable hoop stiffness to that of GFRP tube. The strength of control specimens was governed by crushing and spalling of concrete cover. Unlike spiral reinforcement, GFRP tubes confined larger concrete areas and also contributed as longitudinal reinforcement, leading to increases in flexural and shear strengths, up to 113% and 69%, respectively.  相似文献   

9.
Sixteen under-reinforced high strength concrete one-way slabs were cast, heated at 600 °C for 2 h, repaired, and then tested under four-point loading to investigate the coupling effect of water recuring and repairing with advance composite materials on increasing the flexural capacity of heat-damaged slabs. The composites used included high strength fiber reinforced concrete layers; and carbon and glass fiber reinforced polymer (CFRP and GFRP) sheets. Upon heating then cooling, the reinforced concrete (RC) slabs experienced extensive map cracking, and upward cambering without spalling. Recuring the heat-damaged slabs for 28 days allowed recovering the original stiffness without achieving the original load carrying capacity. Other slabs, recured then repaired with steel fiber reinforced concrete (SFRC) layers, regained from 79% to 84% of the original load capacity with a corresponding increase in stiffness from 382% to 503%, whereas those recured then repaired with CFRP and GFRP sheets, regained up to 158% and 125% of the original load capacity with a corresponding increase in stiffness of up to 319% and 197%, respectively. Control, heat-damaged, and water recured slabs showed a typical flexural failure mode with very fine and well distributed hairline cracks, propagated from the repair layers to concrete compression zone. RC slabs repaired with SFRC layers failed in flexural through a single crack, propagated throughout the compression zone, whereas those repaired with CFRP and GFRP experience yielding failure of steel prior to the composites failure.  相似文献   

10.
11.
The experiments were performed for assessing the influence of cyclic thermal loading on the shear strength of reinforced concrete (RC) beam specimens. One hundred eleven RC beams of 100 × 150 × 1200 mm size reinforced in tension zone with two bars of 8, 10 and 12 mm diameters were tested under four point loading. The beams were subjected to a number of thermal cycles varying from 7 to 28 cycles with peak temperature taken as 100, 200 and 300 °C. The effects of thermal cycles on the crack pattern, failure mechanism, first crack load and the shear strength of beams have been discussed. The shear strength of the beams has been found to increase by up to 10% at lower temperature cycles of 100 and 200 °C but reduces by up to 14% at higher temperature (300 °C) depending on the severity of thermal loading. The results of study emphasize the need for developing appropriate guidelines for the design of RC structural elements used in comparatively high temperature environment with cyclic thermal loading conditions.  相似文献   

12.
This paper presents the results of an experimental investigation on square and circularised square reinforced concrete (RC) columns intermittently wrapped with carbon fibre reinforced polymer (CFRP) under different loading conditions. Twelve RC specimens consisting of eight square RC specimens with 150?mm × 150?mm cross-section and 800?mm height and four circularised square RC specimens with 212?mm diameter and 800?mm height were tested under concentric axial load, eccentric axial load and four-point flexural load. The test results showed that intermittent wrapping increased the strength and ductility of square RC specimens. The test results also showed that circularisation combined with intermittent wrapping significantly improved the strength and ductility of square RC specimens. The experimental axial load-bending moment interaction diagram showed that the best performance was achieved by intermittently CFRP wrapped circularised square RC specimens.  相似文献   

13.
通过对3根碳纤维布加固小偏压钢筋混凝土柱及对比柱的静载试验和理论分析,表明采用横向缠绕碳纤维布加固后小偏压柱的极限承载力有不同程度的提高,变形能力得到改善。横向碳纤维约束了混凝土的变形,提高了混凝土的极限抗压强度。提出了碳纤维加固小偏压柱的承载力计算公式和设计建议。  相似文献   

14.
In this paper, the durability of the adhesive bond between concrete and carbon fibre reinforced polymers (CFRP) strengthening systems has been investigated under accelerated ageing conditions, i.e., at 40 °C and 95% relative humidity. Mechanical characterizations were carried-out on control and exposed CFRP strengthened concrete specimens, in order to assess the evolutions of the adhesive bond properties during hydrothermal ageing. Results from different experimental campaigns are presented and reveal significant evolutions (decrease in the adhesive bond strength and/or change in the failure mode) depending on various parameters, such as the surface preparation of concrete, the presence of a carbonated concrete layer, the nature of the CFRP overlay (carbon fibre sheets or pultruded CFRP plates), the ageing behaviour of the bulk epoxy adhesive itself, or the test configuration used to evaluate the adhesive bond strength (pull-off or shear loading test). Moisture diffusion from the superficial layer of concrete (i.e., diffusion of interstitial pore solution) towards the adhesive joint is suspected to be a key factor driving the degradation process during hydrothermal ageing.  相似文献   

15.
The transfer length of a prestressed near surface mounted (NSM) fiber reinforced polymer (FRP) rod is the distance over which the rod must be bonded to the epoxy to develop the prestressing force in the rod. The transfer length is intended to provide bond integrity for the strengthened concrete member. This paper presents experimental results and an empirical equation to estimate the transfer length of prestressed NSM Carbon FRP (CFRP) rod in concrete beams. Twenty-two reinforced concrete specimens were strengthened with NSM CFRP rods. Two types of CFRP rods were used: spirally wound and sand blasted rods. Four prestressing levels were used: 40%, 45%, 50% and 60% of the tensile strength of the CFRP rod. The strain behavior in the CFRP rod was monitored by gauges mounted on the CFRP rod along the length of the beam. The test results showed that the transfer length of the prestressed NSM CFRP rod was about 35 times the diameter of the CFRP rod. The maximum bond stress of the CFRP rod in epoxy was found to range from 11 to 16 MPa for the sand blasted rods and from 12 to 23 MPa for the spirally wound rods. An empirical expression based on curve fitting of the measured data was proposed to predict the prestressing stress in the CFRP rod along the length of the beam.  相似文献   

16.
《Fire Safety Journal》2006,41(2):115-121
Cubes of 100×100×100 mm3 and cylinders of 100×100×515 mm3 were designed and fabricated with C50, C80 and C100 high-performance concrete (HPC) mixed with and without polypropylene (PP) fibres, respectively. These specimens were heated in an electric furnace, approximately following the curve of ISO-834, with a series of target temperatures ranging from 20 to 900 °C. No explosive spalling was observed during the fire test on HPC specimens with PP fibres, whereas some spalling occurred for HPC specimens without PP fibres. The relationship between the mass loss and the exposure temperature was investigated. In addition, the heated and cooled cubes and prisms were tested under monotonic compressive loading and four-point bending loading, respectively. The degradation of both the residual compressive strength and the residual flexural strength was analyzed. Furthermore, the effects of PP fibres on the residual mechanical strength of HPC specimens at elevated temperatures were also investigated. Finally, a fire-resistance design curve relating the residual compressive strength to temperature, as well as a design curve relating the residual flexural strength to temperature, were proposed based on the statistical analysis of the test data.  相似文献   

17.
纤维材料环向缠绕加固混凝土偏压柱受力性能研究(Ⅰ)   总被引:1,自引:0,他引:1  
进行了纤维材料环向缠绕加固混凝土偏压柱的静载试验,其中,碳纤维加固试件5个,玻璃纤维加固试件1O个.结果表明,与未加固柱相比,由于纤维的约束,达极限承载力时,混凝土的极限应变增加,柱中纵筋的应变都增大.纤维环向缠绕加固,可提高小偏压柱的承载、变形能力和刚度,也可提高大偏压柱的承载力;采用全包法加固比条带法加固效果显著且更经济;还引入含纤特征值λf衡量纤维布的相对用量,提出了偏压柱约束混凝土的应力、应变计算公式,参考规范提出环向缠绕纤维材料加固偏压柱的承载力计算公式,并与试验结果对比,验证了公式的有效性.  相似文献   

18.
进行了纤维材料环向缠绕加固混凝土偏压柱的静载试验,其中,碳纤维加固试件5个,玻璃纤维加固试件10个.结果表明,与未加固柱相比,由于纤维的约束,达极限承载力时,混凝土的极限应变增加,柱中纵筋的应变都增大.纤维环向缠绕加固,可提高小偏压柱的承载、变形能力和刚度,也可提高大偏压柱的承载力;采用全包法加固比条带法加固效果显著且更经济;还引入含纤特征值λf衡量纤维布的相对用量,提出了偏压柱约束混凝土的应力、应变计算公式,参考规范提出环向缠绕纤维材料加固偏压柱的承载力计算公式,并与试验结果对比,验证了公式的有效性.  相似文献   

19.
主要进行了素混凝土方形短柱、钢筋混凝土方形短柱CFRP加固后的力学性能试验研究。试验表明,外包CFRP可以大幅度提高素混凝土柱的轴心抗压承载力,但在不同程度上降低了延性。提高幅度会随着外包面积比例的增加而提高很显著,全包时甚至达到36%。而CFRP加固钢筋混凝土柱也能提高其轴向抗压承载力,但提高幅度远不如对素混凝土柱的提高幅度。  相似文献   

20.
The bond strength of reinforcing bars embedded in full-scale heavily reinforced concrete sections made with industrial self-consolidating concrete (SCC) was investigated and compared with that of normal concrete (NC). The flowability of SCC mix through the dense reinforcement was visually monitored from a transparent formwork. The bond stress was tested for bars located at three different heights (150 mm, 510 mm, and 870 mm from the bottom of the pullout specimens) and at different tested ages (1, 3, 7, 14, and 28 days). The bond stress-free end slip relationship, the top bar effect and the effect of age on bond stress was investigated in both SCC and NC pullout specimens. Bond stresses predicted based on some major codes were compared with those obtained from experiments. The results indicated that casting SCC was much faster and easier and could be done with less labor effort and no concrete blockage among the heavy reinforcements compared to NC. The results also indicated that the bond stress was slightly higher in the SCC pullout specimen compared to the NC pullout specimen. The difference was more pronounced in the top bars and at 28 days of testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号