首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 214 毫秒
1.
混凝土结构在使用过程中均会受到动态荷载作用,混凝土的动态力学特性与静态情况下有很大的不同.应用MTS试验机,对C45混凝土在应变速率为10-5~10-2s-1范围内进行单轴动态拉伸试验,全面系统的介绍了混凝土动态受拉试验设备和试验方法.系统研究了不同应变速率下混凝士的抗拉强度、弹性模量、峰值应变等抗拉力学特性,并给出了...  相似文献   

2.
花岗岩动态轴向拉伸力学性能试验研究   总被引:4,自引:1,他引:3  
在MTS试验机上对花岗岩进行不同应变率(10-6~10-2 s-1)、不同预静载下的冲击加载以及变幅三角波荷载下的动态轴向拉伸系列试验。试验结果表明:在10-6~10-2 s-1应变率范围内,岩石抗拉强度随应变率提高近线性增长;花岗岩的弹性模量随应变率变化无明显变化;峰值应变随应变率增大有增长的趋势,极限应变没有明显的率敏感性;不同应变率的名义应力–应变全曲线的上升段在约40%强度以前呈线性,之后出现明显非线性变形,但随着应变率的增加,非线性程度降低;下降段可简化为两段折线:从峰值卸载至25%强度时,出现拐点,此时应变为300~400με,此后应变增长速度加快,降至残余应力10%强度处时,应变为600~900με;50%以下预静载不会对花岗岩的动载强度产生不利,反而有所增强;更高的预静载则会降低动载强度;在往复加载的低周疲劳引起的损伤累积下,岩石的动强度低于单调加载;随着循环次数的增加,残余应变逐渐增加,且增加的幅度亦有所加大,出现损伤软化的特征。  相似文献   

3.
高强混凝土动态受拉特性的试验研究   总被引:1,自引:0,他引:1  
混凝土的动态力学特性与静态情况下有很大的不同,为了明确高强混凝土在动态条件下的受拉力学特性,本文应用MTS试验机,对C50混凝土在应变速率为10-5/s~10-2/s范围内进行单轴动态拉伸试验,系统研究了不同应变速率下混凝土的抗拉强度、弹性模量、峰值应变等抗拉力学特性,并分析了应变速率对高强混凝土抗拉强度、弹性模量等力学指标的影响规律。试验结果表明:混凝土抗拉强度、弹性模量随着应变速率的增加而增加,泊松比离散性比较大,增加趋势不明显,动态受拉应力应变曲线与静态相似。这些成果有利于完善混凝土的动态本构关系。  相似文献   

4.
滑移型裂纹模型在研究岩石动态单轴抗压强度中的应用   总被引:9,自引:6,他引:3  
 基于滑移型裂纹模型, 研究了花岗岩在应变速率为10 - 4~100 s - 1的单轴抗压强度与应变速率的关系。结果表明, 花岗岩的抗压强度随应变速率的增加而增加, 模型结果与实验结果吻合较好。在动荷载作用下, 裂纹的扩展速率和岩石断裂韧度的率相关特性, 导致岩石的动态抗压强度随应变速率的增加而增加。  相似文献   

5.
 博士学位论文摘要 岩石材料动态力学特性是评价岩石结构在爆炸以及地震载荷作用下稳定性的重要参数, 是国防和民用防护工程研究的基本资料, 具有重要的学术价值和应用价值。对花岗岩材料在动态压应力(单轴和三轴) 作用下的力学特性进行了较系统的实验和理论研究。首先通过实验研究了花岗岩材料的动态断裂特性以及在单轴和三轴动态压应力作用下的强度以及变形特性。结果表明, 花岗岩的动态断裂韧度随加载速率的增加以及加载时间的减小而增加。在单轴情况下, 花岗岩的抗压强度随应变速率的增加而增加, 杨氏模量以及泊松比随应变速率的变化很小。在三轴情况下, 花岗岩的抗压强度也随应变速率的增加而增加, 强度的增加幅度随围压的增加有减小的趋势, 杨氏模量以及泊松比随应变速率的变化不大; 花岗岩的杭压强度随围压的增加明显增加, 在不同的应变速率下具有相同的趋势, 花岗岩的杨氏模量以及泊松比随围压的增加有小幅度的增加趋势。在实验研究的基础上, 应用滑移型裂纹模型对花岗岩材料在压缩应力作用下的力学特性进行了理论研究。在单轴情况下, 采用一组与轴向应力平行的滑移型裂纹系列模拟岩石材料的劈裂破坏模式同时考虑裂纹间的相互作用。根据裂纹的动态扩展准则以及能量平衡理论, 得到了不同应变速率下花岗岩的理论强度值以及应力应变关系, 这些理论结果与实验结果符合得非常好。本部分的研究还表明, 在动载荷作用下, 裂纹的扩展速率以及岩石材料的动态断裂韧度的率相关特性导致岩石材料的单轴抗压强度随应变速率的增加而增加。当应变速率为10- 4~ 100S- 1范围时, 裂纹的扩展速率对岩石材料的破坏影响可以忽略, 岩石材料的抗压强度随应变速率的增加仅仅由于岩石材料的动态断裂韧度的率相关特性造成。在三轴情况下, 用一组与轴向应力成一定夹角的滑移裂纹系列模拟岩石材料的剪切破坏模式, 并根据虚拟力方法得到了该裂纹系列的应力强度因子表达式。根据动态裂纹扩展准则以及能量平衡理论, 也得到了不同围压以及不同应变速率下花岗岩的理论强度值以及应力应变关系。结果表明, 花岗岩的抗压强度以及应力应变关系随应变速率的变化规律与实验结果符合得比较好。模型结果还表明, 由模型得到的强度以及应力应变曲线随围压的变化规律在较低围压时(小于110M Pa) 与实验结果符合得比较好。本项研究在实验研究的基础上, 创新性地从研究岩石内部固有的微裂纹在动载荷作用下的扩展聚合特性入手, 结合细观力学以及动态断裂力学的相关理论, 揭示了花岗岩的率相关特性机理, 初步建立了岩石材料宏观动态力学特性与岩石内部固有的裂纹动态扩展特性的关系以及岩石材料强度与应变速率的关系和率相关的岩石材料本构模型, 构筑了系统研究岩石材料率相关特性的基本框架。  相似文献   

6.
徐浩  王平 《建筑材料学报》2015,18(6):1084-1088
为了研究应变速率和应力水平对中国铁路轨道系统(CRTS)Ⅰ型板式无砟轨道水泥乳化沥青砂浆(CA砂浆)动态抗压强度、弹性模量和临界应变的影响规律,对0%,30%,60%和90%应力水平下的CA砂浆试件进行了应变速率为1×10-5~1×10-2s-1的单轴压缩试验.结果表明:应变速率和应力水平对CA砂浆的动态抗压性能影响显著;随着应变速率的增加,CA砂浆的动态抗压强度显著提高;随着应力水平的增大,CA砂浆的动态抗压强度明显降低,最大降低幅度为6.78%;CA砂浆的弹性模量随着应变速率和应力水平的增加呈增大趋势;CA砂浆的临界应变随应变速率的增加而增大,但随应力水平的增大而减小,且应变速率对临界应变的影响大于应力水平对临界应变的影响.  相似文献   

7.
水泥沥青(CA)砂浆试件历经0,7,14,30,60d水浸泡后,在电子万能试验机上进行了应变速率1×10-5~1×10-2s-1的动态压缩试验,研究了水浸泡历时与应变速率对CA砂浆抗压强度、弹性模量、峰值应变以及应力-应变全曲线等动态特性的影响.结果表明:水浸泡历时和加载应变速率对CA砂浆的力学性能影响明显;CA砂浆的抗压强度和弹性模量随应变速率的增大而增大;相同应变速率下,CA砂浆的抗压强度和弹性模量均随水浸泡历时的增加先减小后增大;CA砂浆的平均抗压强度最大降低幅度为46.31%,平均弹性模量最大降低幅度为44.91%;CA砂浆的峰值应变随应变速率与水浸泡历时的增加呈增大的趋势,且水浸泡对峰值应变的影响大于应变速率对峰值应变的影响.  相似文献   

8.
由于岩石材料动态破坏的复杂性,理论分析和实验研究都还很不充分,岩石的动力特性越来越受到重视。本文采用霍普金森压杆对花岗岩圆柱试样进行了动态压缩试验,建立了加载速率与花岗岩冲击破坏时的弹性应变能、结构破坏能及岩石破坏形态之间的关系。试验结果表明:甘肃地区弹模在17~21 GPa的花岗岩在瞬时加载条件下,强度随着加载速率的增加而提高;动态压缩强度平均强度为240 MPa,动态模量为31.5 GPa;应变率的变化范围在81~210 s-1,动态压缩强度随着应变率的增加有明显增大的趋势;当冲击速度增加时,岩石破坏后释放的能量显著增长,应变率越大,岩石破碎块越小。该试验结果能够评价动态荷载作用下花岗岩的强度参数,为类似区域的工程设计与施工提供依据。  相似文献   

9.
作为世界上应用最为广泛的建筑材料,混凝土在动态条件下的力学性能明显不同于其在静态情况下力学性能,为了掌握应变速率对混凝土动态抗拉特性的影响,应用MTS液压伺服加载系统,对C35混凝土进行了不同应变速率下的单轴动态拉伸试验,系统分析了应变速率对混凝土力学特性的影响,包括抗拉强度、弹性模量、峰值应变等。试验结果表明:应变速率对混凝土的抗拉特性具有显著的影响,混凝土抗拉强度、弹性模量随着应变速率的增加而增加,泊松比数据的离散性较大,应变速率对其影响趋势不明显。这些成果有利于进一步掌握混凝土的动态抗拉特性。  相似文献   

10.
花岗岩在单轴冲击压缩荷载下的动态断裂分析   总被引:5,自引:0,他引:5       下载免费PDF全文
利用脉冲整形器改进后的分离式Hopkinson压杆(SHPB)系统,对新加坡Bukit Timah地区的花岗岩圆柱形试样进行了高应变率下的单轴压缩实验。实验结果发现:随着应变率的增加,不仅花岗岩材料的抗压强度增大,而且以轴向拉伸劈裂为主要破坏形式的破碎程度也有所提高,表现为碎块的尺寸减小和数量增加。针对上述花岗岩的动态特性,采用多裂纹相互作用的动态滑移型裂纹模型定量的分析了不同应变率下,材料的微裂纹的初始长度、角度、初始裂纹间距以及裂纹面的摩擦系数等微裂纹特征对材料动态强度及破碎的影响,将岩石类材料的宏观动力学特性与其细观微结构联系起来,合理地解释了花岗岩的动态强度及破碎程度的应变率相关性。  相似文献   

11.
应变率对岩石强度和变形性质的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
本文根据晶屑凝灰岩、石英砂岩、粉砂岩等在不同应变率下的压缩或拉伸试验结果,并结合国外的大量试验资料,得出岩石破坏强度发生显著变化的应变率范围ε_d;应变率小于ε_d时,随着应变率的变化,岩石强度无明显变化;应变率达到或超过ε_d时,岩石强度就有显著增长,对此用破裂传播速度作了理论分析和解释。另外根据岩石破坏前变形随应变率增大或减小的现象,提出了不同岩石具有不同的临界应变率。用该临界应变率可以确定岩石破坏后区的变形是随荷载的减小而呈增大或减小的变化趋势,并对此观象用破坏能的概念进行了探讨。本文还研究了软岩、硬岩对应变率的敏感度;并指出增大试件围压会使试件的应变率敏感度减弱,也就是说使试件趋于“硬化”。以上结论及理论分析不仅在理论上具有重要的意义,在岩石工程中也有实用意义。  相似文献   

12.
不同应变速率下混凝土直接拉伸试验研究   总被引:10,自引:0,他引:10  
本文通过在MTS试验机上对两种强度混凝土在应变速率10-5~10-0.3s范围内进行动态单轴直接拉伸试验,系统、全面研究了混凝土在不同应变速率影响下的强度、变形特性以及耗能性能;对强度、峰值应力处应变、弹性模量分别给出了反映应变速率影响的经验公式;分析了泊松比、吸能能力与应变速率的关系;并对不同速率下混凝土的拉伸应力-应变全曲线进行了探索,提出了由一组方程结合混凝土静态参数即可描述不同应变速率下混凝土应力-应变全过程特性的方法。  相似文献   

13.
Strain-rate dependency of the dynamic tensile strength of rock   总被引:8,自引:0,他引:8  
Dynamic tension tests based on Hopkinson’s effect combined with the spalling phenomena were performed on Inada granite and Tage tuff to investigate the strain-rate dependency of the dynamic tensile strength of rock. The static tensile strengths were determined and compared with the dynamic tensile strengths. The fracture processes under various loading conditions were analyzed using a proposed finite element method to verify the differences between the dynamic and static tensile strengths and the strain-rate dependency. These analyses revealed that the differences were due to the stress concentrations and redistribution mechanisms in the rock. The rock inhomogeneity also contributed to the difference between the dynamic and static tensile strengths. An increase in the uniformity coefficient stimulated a reduction in the strain-rate dependency; i.e., the strain-rate dependency of the dynamic tensile strength was caused by the inhomogeneity of the rock. The fracture processes and principal stress fields in the specimens at high and low strain rates were analyzed to investigate fracture formations at various strain rates. Higher strain rates generated a large number of microcracks; the interaction of the microcracks interfered with the formation of the fracture plane. The observed dynamic tensile strength increase at a high strain rate was caused by crack arrests due to the generation of a large number of microcracks.  相似文献   

14.
针对混凝土的重要组成材料水泥砂浆,在MTS试验机上对其进行不同应变速率、不同预静载下的冲击加载以及变幅三角波荷载下的动态轴向拉伸系列试验。试验结果表明:①砂浆的抗拉强度随应变率变化敏感性较强,在10-6~10-2 s-1应变率范围内,强度可提高2倍以上;②弹性模量随应变率增加成比例增长,但幅度不大;③峰值应变随应变率的提高有所提高,但离散性较大。极限应变值没有明显率敏感性;④由应变片值获得的名义轴拉应力应变曲线可简化为三段折线,上升段可近似看为直线段,下降段可看成两段折线,卸载至约25%强度时,出现拐点,应变约为200με;⑤65%以下预静载没有对砂浆的动载强度产生不利,反而有所增强;⑥在加载上升段进行地震作用频率范围的往复加载,对水泥砂浆造成的损伤累计较小。  相似文献   

15.
岩石静态和准动态加载应变率的界限值研究   总被引:4,自引:4,他引:0  
 为研究岩石材料静态和准动态加载试验的应变率界限值,以若干硬岩试件在不同应变率加载条件下的试验数据为基础,借助统计学理论与方法,定量分析岩石动态抗压强度与静态抗压强度之比值 与应变率的相关性大小,得到硬岩试件的强度参数与应变率之间的规律性关系,进而得到岩石材料静态和准动态加载试验的应变率界限值,即加载应变率 <5×10-4 s-1时为静态试验,此时 均保持在1.00附近,近似为常数,岩石强度与应变率无相关性;5×10-4 s-1< <102 s-1时为准动态试验,此时 与应变率为幂函数关系,岩石强度与应变率表现出较强或显著相关的特性。  相似文献   

16.
Transition in the rate-dependent mechanical response of rock was investigated due to the presence of impersistent joint with different infill conditions. Four types of samples, i.e. intact, jointed with no grouting, jointed and grouted with cement, and jointed and grouted with epoxy, were fabricated using model material. A series of dynamic split Hopkinson pressure bar (SHPB) tests was conducted on prepared samples with strain rates varying between 53–130 s?1 along with static uniaxial compression tests (10?4 s?1). Progression of fracture/failure along samples was monitored using high-speed imaging and digital image correlation (DIC). Strength was observed to be significantly lower for jointed samples as compared to intact samples. However, the increasing trend of strength with strain rates remained similar for all types of samples. Epoxy was observed to be a better grout due to greater improvement in the strength of epoxy grouted jointed samples than cement grouted samples under both static and dynamic conditions. Significant changes were observed in fracture behavior (initiation, pattern and mechanism) with strain rate for intact and jointed unfilled/grouted samples. Fracturing was dominated by shear and tensile cracks at high strain rates compared to tensile cracks at low strain rates in all samples. Unlike static loading conditions, the location of cracks initiation shifts away from joint tips with increasing strain rate and depending upon existing infill conditions (unfilled/grouted).  相似文献   

17.
 加载速率对岩石力学性质具有重要影响,影响的程度与岩石本身的微结构和加、卸载应力路径及状态等密切相关。基于静态加载速率范围内的9个不同等级应变率下粗晶大理岩单轴压缩试验,研究加载应变率对岩石的应力–应变曲线、破坏形态、强度、弹性模量及变形模量与应变能耗散及释放的影响规律,探讨岩石损伤演化的能量机制。根据总体积应变及裂纹体积应变与起裂及扩容应力的相关性,确定各应变率下岩石起裂及临界扩容应力。加载应变率大约以1×10-3 s-1为分界点,小于该值时应力–应变曲线峰值点附近仍存在一定的塑性屈服或流动段,超过该值后表现为“折线”型。随着加载应变率的增加,岩样破裂模式由张剪型逐渐过渡到张性劈裂甚至劈裂弹射。一般而言,起裂及临界扩容应力和峰值应力均随加载速率增大而增大,且起裂及临界扩容应力越接近峰值强度,但当应变率为1×10-4~1×10-3 s-1时,上述值均出现一个相对低值区间,这与粗晶大理岩的微结构特征相关。起裂应力、临界扩容应力、弹性模量及变形模量均与峰值强度线性相关。单轴压缩下峰前能量耗散量越多,强度越高,峰后可释放弹性应变能和释放速率越大,岩石的张性贯通破裂特性愈强,破裂块数越多。能量耗散使岩石损伤而强度丧失,而能量释放使岩石宏观破裂面贯通而整体破坏。  相似文献   

18.
研究了水压力环境中混凝土在经历循环荷载后的动态压缩强度,分析了水压力和循环次数对混凝土强度的影响。试验应变速率为10~(-5)/s、10~(-4)/s、10~(-3)/s和10~(-2)/s,水压为0~10 MPa。试验结果表明,在不同水压力下饱和混凝土的强度都随应变速率提高而增加,也随水压力提高呈增加地趋势。在相同水压力下,应变速率越高,混凝土强度提高越显著。饱和混凝土经过循环荷载后,其强度随荷载循环次数的增加呈现出先提高后降低的现象。应变速率越高,混凝土强度最大时所对应的荷载循环次数也相应增加。还构建了饱和混凝土强度与应变速率、水压力的关系,其与试验数据吻合较好。进一步引入了管道孔隙模型,并基于汞压法的原理和孔隙分布特点,考虑混凝土孔隙的微观结构解释了孔隙水对混凝土强度的作用机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号