首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence of the taste and odour compounds geosmin and 2-methyl isoborneol (2-MIB) affects the organoleptic quality of raw waters from drinking water reservoirs worldwide. UV-based oxidation processes for the removal of these substances are an alternative to adsorption and biological processes, since they additionally provide disinfection of the raw water. We could show that the concentration of geosmin and 2-MIB could be reduced by VUV irradiation and the combination of UV irradiation with ozone and hydrogen peroxide in pure water and water from a drinking water reservoir. The figure of merit EE/O is an appropriate tool to compare the AOPs and showed that VUV and UV/O3 yielded the lowest treatment costs for the odour compounds in pure and raw water, respectively. Additionally, VUV irradiation with addition of ozone, generated by the VUV lamp, was evaluated. The generation of ozone and the irradiation were performed in a single reactor system using the same low-pressure mercury lamp, thereby reducing the energy consumption of the treatment process. The formation of the undesired by-products nitrite and bromate was investigated. The combination of VUV irradiation with ozone produced by a VUV lamp avoided the formation of relevant concentrations of the by-products. The internal generation of ozone is capable to produce ozone concentrations sufficient to reduce EE/O below 1 kWh m−3 and without the risk of the formation of nitrite or bromate above the maximum contaminant level.  相似文献   

2.
The sea urchin Sphaerechinus granularis was used to investigate the impact of relevant levels of UV-B radiation on the early life stages of a common Mediterranean free spawning benthic species. Sperm, eggs and embryos were exposed to a range of UV radiation doses. The resulting endpoints were evaluated in terms of fertilisation success, development and survival rates. Above a weighted UV radiation dose of 0.0029 kJ m− 2, fertilisation capability of irradiated sperm decreased rapidly. The exposure of the eggs to 0.0175 kJ m− 2 and more led to delayed and inhibited development with ensuing embryonic morphological abnormalities. One-day old larvae remained strongly sensitive to UV radiation as shown by the 50% decrease of the larval survival rate for a dose of 0.025 kJ m− 2 UVR. The elevated sensitivity of embryos to experimental UVR went along with a lack of significant amount of sunscreen compounds (e.g., mycosporine-like amino acids) in the eggs. The present results demonstrated that gamete viability and embryonic development may be significantly impaired by solar UV radiation in S. granularis, compromising in this way the reproduction of the species. Unless adaptive behavioural reproductive strategies exist, the influence of ambient UV radiation appears as a selective force for population dynamics of broadcast spawners in the shallow benthic Mediterranean environment.  相似文献   

3.
The occurrence of algal taste and odor (T&O) compounds was investigated in three Swiss lakes which exhibit different nutrient levels from eutrophic to oligotrophic (Lake Greifensee, Lake Zurich and Lake Lucerne). Apart from dissolved T&O compounds, the study also encompassed particle-bound compounds, i.e., compounds that can be released from damaged algal cells during drinking water treatment. A combined instrumental (SPME-GC-MS) and sensory method was applied that allowed to detect and quantify T&O compounds in natural waters in the sub ppt to low ppt-range.In addition to the prominent T&O compounds geosmin and 2-methyl-isoborneol (MIB), four other T&O compounds could be detected in the lake waters, though all at relatively low concentrations (maximum concentrations of geosmin 19 ng L−1, MIB 3 ng L−1, β-ionone 27 ng L−1, β-cyclocitral 7 ng L−1, 2-isobutyl-3-methoxypyrazine 2 ng L−1, 2-isopropyl-3-methoxypyrazine 16 ng L−1). The concentration peaks typically occurred in the epilimnion during summer concurrent with a high phytoplankton biomass. Consistently, the concentration levels for most of the compounds varied substantially between the three lakes and generally decreased in the order eutrophic Lake Greifensee > mesotrophic Lake Zurich > oligotrophic Lake Lucerne. Furthermore, our data revealed that the occurrence of β-ionone was largely influenced by Planktothrix rubescens. This is the first time that a correlation between β-ionone and this cyanobacterium has been reported for natural waters.  相似文献   

4.
Two Advanced Oxidation Processes, namely vacuum-ultraviolet (VUV) photolysis at 172 nm and ultraviolet/hydrogen peroxide (UV/H2O2) were investigated for the degradation of anatoxin-a in aqueous solutions. Solutions of anatoxin-a-fumarate were treated with VUV light at 172 nm with a UV dose of 200 mJ/cm2, where fumaric acid served as a reference compound for a competition kinetics analysis. The second-order rate constant for the reaction between anatoxin-a and the hydroxyl radical was found to be (5.2 ± 0.3) × 109 M−1 s−1 and was independent of pH, temperature, and initial concentration of anatoxin-a. The direct photolysis of anatoxin-a using a medium pressure (MP) UV lamp was also investigated, in which case a UV dose of 1285 mJ/cm2 was required to degrade anatoxin-a by 88% and 50% at concentrations of 0.6 mg/L and 1.8 mg/L of toxin, respectively. Treatment of anatoxin-a with a low pressure (LP) UV lamp in the presence of 30 mg/L of H2O2 was examined, where it was found that more than 70% of toxin could be degraded at a UV dose of 200 mJ/cm2. The degradation arises from the oxidation of the toxin by hydroxyl radicals. The addition of H2O2 clearly enhanced the degradation of anatoxin-a, up to a concentration of 40 mg/L, after which addition of more H2O2 had little effect on the degradation kinetics of anatoxin-a. The effect of background constituents in the water on the degradation of anatoxin-a was also investigated using natural and synthetically produced model waters.  相似文献   

5.
Biologically active sand filters within water treatment plants (WTPs) are now recognised as an effective barrier for the removal of geosmin. However, little is known regarding the actual microbiological processes occurring or the bacteria capable of degrading geosmin. This study reports the enrichment and isolation of a Gram-negative bacterium, Geo48, from the biofilm of a WTP sand filter where the isolate was shown to effectively degrade geosmin individually. Experiments revealed that Geo48 degraded geosmin in a planktonic state by a pseudo-first-order mechanism. Initial geosmin concentrations ranging from 100 to 1000 ng/l were shown to directly influence geosmin degradation in reservoir water by Geo48, with rate constants increasing from 0.010 h−1 (R2 = 0.93) to 0.029 h−1 (R2 = 0.97) respectively. Water temperature also influenced degradation of geosmin by Geo48 where temperatures of 11, 22 and 30 °C resulted in rate constants of 0.017 h−1 (R2 = 0.98), 0.023 h−1 (R2 = 0.91) and 0.019 h−1 (R2 = 0.85) respectively. Phylogenetic analysis using the 16S rRNA gene of Geo48 revealed it was a member of the Alphaproteobacteria and clustered with 99% bootstrap support with an isolate designated Geo24, a Sphingopyxis sp. previously described as degrading geosmin but only as a member of a bacterial consortium. Of the previously described bacteria, Geo48 was most similar to Sphingopyxis alaskensis (97.2% sequence similarity to a 1454 bp fragment of the 16S rRNA gene). To date, this is the only study to report the isolation and characterisation of a Gram-negative bacterium from a biologically active sand filter capable of the sole degradation of geosmin.  相似文献   

6.
Earthy odor compounds production and loss in three cyanobacterial cultures   总被引:2,自引:0,他引:2  
Z Li  P Hobson  W An  MD Burch  J House  M Yang 《Water research》2012,46(16):5165-5173
Geosmin and 2-methylisoborneol (MIB) related odor events caused by cyanobacteria have been a very common problem to water supply. This paper investigated the effects of temperature (18 and 25 °C) and light intensity (10 and 100 μmol photons m−2 s−1) on the production behaviors of earthy odor compounds by three odorous cyanobacteria, i.e., the geosmin-producing planktonic Anabaena circinalis (Ana 318), geosmin-producing benthic Phormidium amoenum (Pho 012) and MIB-producing benthic Phormidium sp. (Pho 689). At the same time, the effects of biodegradation and volatilization on the fates of the released odor compounds in water were also evaluated. The combination of high temperature (25 °C) and light intensity (100 μmol photons m−2 s−1) favored the growth of the three cyanobacteria and the production of chl-a and odor compounds. However, higher chl-a and odor yields (average odor compounds per cell) were achieved for the two benthic cyanobacteria at the temperature of 18 °C. Most of geosmin was included within the cells for Ana 318 (95-99%) and Pho 012 (85-60%), while only 20-40% MIB was bound to the cells for Pho 689. The half-life times of MIB and geosmin due to volatilization varied between 18.8 and 35.4 days, while 8 out of 10 samples exhibited a half-life time (t1/2) for geosmin biodegradation shorter than 1 day (0.38-15.0 h), showing that biodegradation could affect the fate of geosmin significantly in aquatic environments. In comparison, biodegradation of MIB was much slower (t1/2: 122-2166 h). Denaturing gradient gel electrophoresis (DGGE) analysis showed that Pseudomonas- and Sphingomonas-like bacteria coexisted with cyanobacteria in the cultures, and may have played an important role in geosmin/MIB biodegradation. The result of this study will be helpful for better understanding and managing the earthy odor problems caused by cyanobacteria in water supply.  相似文献   

7.
This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE–CG × GC–TOF–MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce–TiO2 photocatalysis reached ∼70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ−1, the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce–TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m2 m−3 order−1 for visible light irradiation to 0.16 ± 0.03 m2 m−3 order−1 for Ce–TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20–25% the algal growth due to the accumulation of reaction by-products. Three transformation products were identified and tracked along the treatments.  相似文献   

8.
During membrane treatment of secondary effluent from wastewater treatment plants, a reverse osmosis concentrate (ROC) containing trace organic contaminants is generated. As the latter are of concern, effective and economic treatment methods are required. Here, we investigated electrochemical oxidation of ROC using Ti/Ru0.7Ir0.3O2 electrodes, focussing on the removal of dissolved organic carbon (DOC), specific ultra-violet absorbance at 254 nm (SUVA254), and 28 pharmaceuticals and pesticides frequently encountered in secondary treated effluents. The experiments were conducted in a continuously fed reactor at current densities (J) ranging from 1 to 250 A m−2 anode, and a batch reactor at J = 250 A m−2. Higher mineralization efficiency was observed during batch oxidation (e.g. 25.1 ± 2.7% DOC removal vs 0% removal in the continuous reactor after applying specific electrical charge, Q = 437.0 A h m−3 ROC), indicating that DOC removal is depending on indirect oxidation by electrogenerated oxidants that accumulate in the bulk liquid. An initial increase and subsequent slow decrease in SUVA254 during batch mode suggests the introduction of auxochrome substituents (e.g. -Cl, NH2Cl, -Br, and -OH) into the aromatic compounds. Contrarily, in the continuous reactor ring-cleaving oxidation products were generated, and SUVA254 removal correlated with applied charge. Furthermore, 20 of the target pharmaceuticals and pesticides completely disappeared in both the continuous and batch experiments when applying J ≥ 150 A m−2 (i.e. Q ≥ 461.5 A h m−3) and 437.0 A h m−3 (J = 250 A m−2), respectively. Compounds that were more persistent during continuous oxidation were characterized by the presence of electrophilic groups on the aromatic ring (e.g. triclopyr) or by the absence of stronger nucleophilic substituents (e.g. ibuprofen). These pollutants were oxidized when applying higher specific electrical charge in batch mode (i.e. 1.45 kA h m−3 ROC). However, baseline toxicity as determined by Vibrio fischeri bioluminescence inhibition tests (Microtox) was increasing with higher applied charge during batch and continuous oxidation, indicating the formation of toxic oxidation products, possibly chlorinated and brominated organic compounds.  相似文献   

9.
In this study, the results of odour concentration measurements on different wastewater treatment plants are presented and used in order to estimate the odour emission factors relevant to single odour sources. An odour emission factor is a representative value that relates the quantity of odour released to the atmosphere to a specific activity index, which in this case was the plant treatment capacity, resulting in an odour emission factor expressed in odour units per cubic metre of treated sewage. The results show that the major odour source of a wastewater treatment plant is represented by the primary sedimentation (with an OEF equal to 1.9 × 105 ouE m−3). In general, the highest OEFs are observed in correspondence of the first steps of the wastewater depuration cycle (OEF between 1.1 × 104 ouE m−3 and 1.9 × 105 ouE m−3) and tend to decrease along the depuration process (OEF between 7.4 × 103 ouE m−3 and 4.3 × 104 ouE m−3). In general, the OEFs calculated according to this approach represent a model for a rough prediction of odour emissions independently from the specific characteristics of the different plants.  相似文献   

10.
Musty and earthy odors frequently characterize the source water and fish of the Xionghe Reservoir in China. Although odorous compounds and odor-producing cyanobacteria have been analyzed in surface water, potential odorants in sediments and their contribution to the water body have remained uninvestigated. In this study, we examined the odorous compounds and possible odor-producers in the sediments and overlying water of Xionghe Reservoir from November 2007 to October 2008. High concentrations of geosmin (up to 5280.1 ng kg−1 dw−1) were detected in sediments, and eight strains of Streptomyces isolated from sediments were verified as producers of geosmin and/or 2-MIB in M liquid medium by HSPME-GC-MS. Geosmin concentrations in the overlying water were correlated with those in the sediments (r = 0.838, p < 0.05). In vitro studies showed that geosmin in the overlying water was released from the sediment, and that within 12 days the amount released from the sediment was 21.4–51.4%. Concentrations of geosmin in sediments were positively correlated with organic matter (r = 0.642, p < 0.01), total nitrogen (r = 0.606, p < 0.01) and Chl a (r = 0.674, p < 0.01), and were negatively associated with temperature (r = −0.425, p < 0.05). This study indicates that odorous compounds that are released from sediments should be taken into account when assessing the sources of these odorants in waters.  相似文献   

11.
The historical accumulation rates of mercury resulting from atmospheric deposition to four Scottish ombrotrophic peat bogs, Turclossie Moss (northeast Scotland), Flanders Moss (west-central), Red Moss of Balerno (east-central) and Carsegowan Moss (southwest), were determined via analysis of 210Pb- and 14C-dated cores up to 2000 years old. Average pre-industrial rates of mercury accumulation of 4.5 and 3.7 μg m− 2 y− 1 were obtained for Flanders Moss (A.D. 1-1800) and Red Moss of Balerno (A.D. 800-1800), respectively. Thereafter, mercury accumulation rates increased to typical maximum values of 51, 61, 77 and 85 μg m− 2 y− 1, recorded at different times possibly reflecting local/regional influences during the first 70 years of the 20th century, at the four sites (TM, FM, RM, CM), before declining to a mean value of 27 ± 15 μg m− 2 y− 1 during the late 1990s/early 2000s. Comparison of such trends for mercury with those for lead and arsenic in the cores and also with direct data for the declining UK emissions of these three elements since 1970 suggested that a substantial proportion of the mercury deposited at these sites over the past few decades originated from outwith the UK, with contributions to wet and dry deposition arising from long-range transport of mercury released by sources such as combustion of coal. Confidence in the chronological reliability of these core-derived trends in absolute and relative accumulation of mercury, at least since the 19th century, was provided by the excellent agreement between the corresponding detailed and characteristic temporal trends in the 206Pb/207Pb isotopic ratio of lead in the 210Pb-dated Turclossie Moss core and those in archival Scottish Sphagnum moss samples of known date of collection. The possibility of some longer-term loss of volatile mercury released from diagenetically altered older peat cannot, however, be excluded by the findings of this study.  相似文献   

12.
Muddy or earthy odours are a problem in water supplies and fisheries. Some species of aquatic actinomycetes and blue-green algae are generally indicated as sources of muddy odour in natural waters. These organisms are capable of producing the muddy-smelling compounds geosmin and 2-methylisoborneol.The sensory properties of geosmin and 2-methylisoborneol in water and in the flesh of four species of fish were studied. Threshold odour concentrations are presented, and they indicate that both compounds have strong odour characteristics. The intensity of the muddy odour as perceived by the judges was proportional to the logarithm of the concentration of muddy odour compounds in the concentration ranges tested (for geosmin, up to 100 μgkg−1, and for 2-methylisoborneol, up to 10 μg kg−1). The results indicate that it may be possible to quantify muddy odour compounds in water and fish by sensory methods.  相似文献   

13.
Jo CH  Dietrich AM  Tanko JM 《Water research》2011,45(8):2507-2516
Advanced treatment technologies that control multiple contaminants are beneficial to drinking water treatment. This research applied UV/H2O2 for the simultaneous degradation of geosmin, 2-methylisoborneol, four trihalomethanes and six haloacetic acids. Experiments were conducted in de-ionized water at 24 ± 1.0 °C with ng/L amounts of odorants and μg/L amounts of disinfection byproducts. UV was applied with and without 6 mg/L H2O2. The results demonstrated that brominated trihalomethanes and brominated haloacetic acids were degraded to a greater extent than geosmin and 2-methylisoborneol. Tribromomethane and dibromochloromethane were degraded by 99% and 80% respectively at the UV dose of 1200 mJ/cm2 with 6 mg/L H2O2, whereas 90% of the geosmin and 60% of the 2-methylisoborneol were removed. Tribromoacetic acid and dibromoacetic acid were degraded by 99% and 80% respectively under the same conditions. Concentrations of trichloromethane and chlorinated haloacetic acids were not substantially reduced under these conditions and were not effectively removed at doses designed to remove geosmin and 2-methylisoborneol. Brominated compounds were degraded primarily by direct photolysis and cleavage of the C-Br bond with pseudo first order rate constants ranging from 10−3 to 10−2 s−1. Geosmin and 2-methylisoborneol were primarily degraded by reaction with hydroxyl radical with direct photolysis as a minor factor. Perchlorinated disinfection byproducts were degraded by reaction with hydroxyl radicals. These results indicate that the UV/H2O2 can be applied to effectively control both odorants and brominated disinfection byproducts.  相似文献   

14.
The effect of dissolved oxygen on the photodecomposition of monochloramine (7.5 < pH < 10) and dichloramine (pH = 3.7 ± 0.2) at 253.7 nm has been investigated. The kinetic study shows that the rate of photodecomposition of monochloramine is about two times faster in the absence of oxygen than in the presence of oxygen, is not significantly affected by pH and by the presence of hydroxyl radical scavengers (hydrogenocarbonate ion and tert-butanol). The apparent quantum yields of photodecomposition of monochloramine at 253.7 nm ([NH2Cl]0 ≈ 1.5-2 mM, ?253.7 nm = 371 M−1 cm−1) were equal to 0.28 ± 0.03 and 0.54 ± 0.03 mol E−1 in oxygenated-saturated and in oxygen-free solutions, respectively. The photodecomposition rates or the apparent quantum yields of photodecomposition of dichloramine ([NHCl2]0 ≈ 1.5-2 mM, pH = 3.7 ± 0.2) in oxygen-free and in oxygen-saturated solutions were quite identical (Φ = 0.82 ± 0.08 mol E−1; ?253.7 nm = 126 M−1 cm−1). Under O2 saturation, UV irradiation of NH2Cl leads to the formation of nitrite (≈0.37 mol/mol of NH2Cl decomposed), nitrate (≈0.073 mol/mol) and does not form ammonia (<0.01 mol/mol). In oxygen-free solutions, monochloramine decomposes to form ammonia (≈0.37 mol/mol). Photodecomposition of dichloramine did not lead to significant amounts of nitrite and nitrate in the presence and in the absence of oxygen. The nitrogen mass balances also indicate the formation of other nitrogen species (probably N2 and/or N2O) during the photodecomposition of monochloramine and dichloramine by UV irradiation at 253.7 nm.  相似文献   

15.
This study quantifies the uncertainty involved in predicting micropollutant oxidation during drinking water ozonation in a pilot plant reactor. The analysis is conducted for geosmin, methyl tert-butyl ether (MTBE), isopropylmethoxypyrazine (IPMP), bezafibrate, β-cyclocitral and ciprofloxazin. These compounds are representative for a wide range of substances with second order rate constants between 0.1 and 1.9 × 104 M−1 s−1 for the reaction with ozone and between 2 × 109 and 8 × 109 M−1 s−1 for the reaction with OH-radicals. Uncertainty ranges are derived for second order rate constants, hydraulic parameters, flow- and ozone concentration data, and water characteristic parameters. The uncertain model factors are propagated via Monte Carlo simulation and the resulting probability distributions of the relative residual micropollutant concentrations are assessed. The importance of factors in determining model output variance is quantified using Extended Fourier Amplitude Sensitivity Testing (Extended-FAST). For substances that react slowly with ozone (MTBE, IPMP, geosmin) the water characteristic Rct-value (ratio of ozone- to OH-radical concentration) is the most influential factor explaining 80% of the output variance. In the case of bezafibrate the Rct-value and the second order rate constant for the reaction with ozone each contribute about 30% to the output variance. For β-cyclocitral and ciprofloxazin (fast reacting with ozone) the second order rate constant for the reaction with ozone and the hydraulic model structure become the dominating sources of uncertainty.  相似文献   

16.
N,N′-Diethyl-m-toluamide (DEET) is widely used as an insect repellent and has therefore been detected as a contaminant in numerous waste and surface waters. In this study we have determined the absolute reaction rate constants of DEET with the hydroxyl radical and the hydrated electron in aqueous solution as (4.95 ± 0.18) × 109 and (1.34 ± 0.04) × 109 M−1 s−1, respectively, using pulse radiation. To provide additional information on the radicals formed upon oxidation, transient spectra were measured from 1 to 150 μs, with transient decay rates determined from the time-dependence of the maximum absorption at 330 nm. These data suggest simple decay of the initially formed radical to stable products. Radical-based destruction mechanisms for destruction of DEET are proposed based on the LC-MS determination of the stable compounds produced by 60Co γ-irradiation of DEET solutions. These data will be useful in evaluating potential advanced oxidation/reduction processes for the control of DEET and understanding its fate and transport in surface water where analogous radical chemistry is operative.  相似文献   

17.
The kinetics of photodegradation of the pesticide metaldehyde by UV/H2O2 and UV/TiO2 in laboratory grade water and a natural surface water were studied. Experiments were carried out in a bench scale collimated beam device using UVC radiation. Metaldehyde was efficiently degraded by both processes in laboratory grade water at identical rates of degradation (0.0070 and 0.0067 cm2 mJ−1 for UV/TiO2 and UV/H2O2 respectively) when optimised doses were used. The ratio between oxidant and metaldehyde was significantly higher for H2O2 due to its low photon absorption efficiency at 254 nm. However, the presence of background organic compounds in natural water severely affected the rate of degradation, and whilst the pseudo first-order rate constant of degradation by UV/H2O2 was slowed down (0.0020 cm2 mJ−1), the degradation was completely inhibited for the UV/TiO2 process (k′ = 0.00007 cm2 mJ−1) due to the blockage of active sites on TiO2 surface by the background organic material.  相似文献   

18.
Zhong F  Gao Y  Yu T  Zhang Y  Xu D  Xiao E  He F  Zhou Q  Wu Z 《Water research》2011,45(19):6479-6488
An exploratory study on the management of undesirable cyanobacteria blooms with respect to off-flavor problems using an integrated vertical-flow constructed wetland (CW) was performed at a small commercial-scale channel catfish farm from 2004 to 2007. The results of the three-year experiment indicated that water treatment by the CW could reduce the possibility of dominance by undesirable cyanobacteria species that often cause off-flavor problems. A detailed investigation in 2007, showed that the concentrations of geosmin, MIB (2-methylisoborneol), and β-cyclocitral in the water of the recirculating pond (4.3 ng L−1, U.D. (undetected) and 0.2 ng L−1, respectively) treated by the CW were significantly lower than those in the control pond (152.6 ng L−1, 63.3 ng L−1 and 254.8 ng L−1, respectively). In addition, the relationships among the cyanobacteria species, the off-flavor compounds and ten environmental variables were explored by canonical correspondence analysis (CCA). The results showed that Oscillatoria sp., Oscillatoria kawamurae and Microcystis aeruginosa were the main sources of off-flavor compounds in the catfish ponds. The successful manipulation of undesirable cyanobacteria species potentially resulted in lower concentrations of odorous compounds in the water of the recirculating pond. An investigation of the concentrations of geosmin and MIB in catfish fillets showed that the levels of odorous compounds were below the OTC (odor threshold concentration) values in the recirculating pond but were above the OTC values from July to October in the control pond. Water recycling by the CW could potentially be one of the best management practices to control off-flavor occurrences in aquaculture.  相似文献   

19.
The degradation of four pharmaceutical compounds (PhACs), ibuprofen (IBU), diphenhydramine (DP), phenazone (PZ), and phenytoin (PHT) was investigated via ultraviolet (UV) photolysis and UV/H2O2 process with a low-pressure (LP) UV lamp. For each PhAC tested, direct photolysis quantum yields at 254 nm were found to be ranging from 6.32 × 10−2 to 2.79 × 10−1 mol E−1 at pH 7. The second-order rate constants of the reaction between the PhACs and OH were determined to be from 4.86 × 109 to 6.67 × 109 M−1 s−1 by using a competition kinetic model which utilized para-chlorobenzoic acid (pCBA) as a reference compound. The overall effect of OH radical scavenging from humic acid (HA) and anions HCO3, NO3 was measured utilizing ROH,UV method through examining the aqueous photodegradation of pCBA as a probe compound. Moreover, these fundamental direct and indirect photolysis parameters were applied in the model prediction for oxidation rate constants of the PhACs in UV/H2O2 process. It was found that the predicted oxidation rate constants approximated the observed ones. The results indicated that the new ROH,UV probe compound method was applicable for measuring background OH radical scavenging effects in water treatment process of UV/H2O2. Furthermore, by GC-MS analysis, most of the intermediates created during the photodegradation of the selected PhACs in UV/H2O2 process were identified. For the photodegradation of PZ, a competition mechanism existed between the direct UV photolysis and the oxidation of OH. An appropriate dosage of H2O2 could hinder the occurrence of the direct photolysis.  相似文献   

20.
The feasibility of long-term (>3 years), low-temperature (4-15 °C) and anaerobic bioreactor operation, for the treatment of acidified wastewater, was investigated. A hybrid, expanded granular sludge bed-anaerobic filter bioreactor was seeded with a mesophilic inoculum and employed for the mineralization of moderate-strength (3.75-10 kg chemical oxygen demand (COD) m−3) volatile fatty acid-based wastewaters at 4-15 °C. Bioprocess performance was assessed in terms of COD removal efficiency (CODRE), methane biogas concentration, and yield, and biomass retention. Batch specific methanogenic activity assays were performed to physiologically characterise reactor biomass.Despite transient disimprovements, CODRE and methane biogas concentrations exceeded 80% and 65%, respectively, at an applied organic loading rate (OLR) of 10 kg COD m−3 d−1 between 9.5 and 15 °C (sludge loading rate (SLR), 0.6 kg COD kg[VSS]−1 d−1). Over 50% of the granular sludge bed was lost to disintegration during operation at 9.5 °C, warranting a reduction in the applied OLR to 3.75-5 kg COD m−3 d−1 (SLR, c. 0.4-0.5 kg COD kg[VSS]−1 d−1). From that point forward, remarkably stable and efficient performance was observed during operation at 4-10 °C, with respect to CODRE (≥82%), methane biogas concentration (>70%) and methane yields (>4 lMethane d−1), suggesting the adaptation of our mesophilic inoculum to psychrophilic operating conditions.Physiological activity assays indicated the development of psychroactive syntrophic and methanogenic populations, including the emergence of putatively psychrophilic propionate-oxidising and hydrogenotrophic methanogenic activity. The data suggest that mesophilic inocula can physiologically adapt to sub-optimal operational temperatures: treatment efficiencies and sludge loading rates at 4 °C (day, 1243) were comparable to those achieved at 15 °C (day 0). Furthermore, long-term, low-temperature bioreactor operation may act as a selective enrichment for psychrophilic methanogenic activity from mesophilic inocula. The observed efficient and stable bioprocess performance highlights the potential for long-term, low-temperature bioreactor operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号