首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 2004, Chinese Government prescribed standard municipal solid waste (MSW) landfill bottom liners. However, very limited research has been conducted to evaluate the performance of the standard MSW landfill bottom liners prescribed by the Chinese Government. In this paper, the performance of the two types of Chinese MSW landfill bottom liner systems was evaluated based on: (1) the maximum leachate head; (2) leakage rate; (3) peak concentration of the target contaminant in an aquifer which was underlain the assumed landfill, and (4) total mass per unit area of the target contaminant discharged into the aquifer. The performance of the German standard MSW landfill bottom liner system was evaluated and compared with that of Chinese ones. It is found that the calculated maximum leachate head for the Chinese landfill liner systems was much higher than that for the German one. The calculated leakage rate, peak concentration and the maximum total mass per unit area in the aquifer of the target contaminant show that the performance of the Chinese standard landfill liner Type 2 is practically the same as that of the German standard landfill liner with holed geomembrane wrinkles, while the Chinese standard liner Type 1 is less effective, with regarding the mitigation of the impact of landfills to the groundwater quality. It is concluded that the overall performance of the Chinese standard landfill liner systems is less strict than that of the German standard landfill liner system.  相似文献   

2.
Modelling migration of contaminants from waste disposal facility   总被引:1,自引:0,他引:1  
Waste disposal facility design must involve some form of barrier that separates the waste from the groundwater system located below it. This barrier is intended to minimize the migration of contaminants from the waste facility. Natural clay deposits and compacted clay liners of a certain minimum thickness are often used to prevent leachate from flowing down towards groundwater. The finite difference numerical model developed in this study is validated for two case studies. Subsequently, a study was conducted by taking the finite mass of a leachate at the top of the liner; the variation of the maximum concentration of the pollutant in the liner is then determined. From the concentration profiles generated, the optimum clay barrier thickness required to prevent migration of contaminants to the aquifer located below can also be determined.  相似文献   

3.
我国四类衬垫系统防污性能的比较分析   总被引:5,自引:0,他引:5  
对我国填埋场采用的四类衬垫进行了防污性能的比较分析。评价参数包括渗漏率、污染物击穿时间及衬垫系统底部浓度值。除了2m压实黏土衬垫(CCL)外,其余3种均为包含土工膜(GM)的复合衬垫。分析模型采用了污染物通过有缺陷膜复合衬垫的一维运移解析解。以镉离子(Cd2+)为渗滤液中重金属离子的代表;以苯为其中挥发性有机污染物的代表。研究表明土工复合膨润土垫(GCL)复合衬垫的渗漏率最小,2m黏土最大,两者的差别可在3~5个数量级。GCL复合衬垫对重金属离子具有较好的防污性能,尤其是在高水头及复合衬垫接触较差的情形。厚度较大的2m黏土对挥发性有机污染物的防污性能较好,其击穿时间要比GCL复合衬垫大2~3个数量级。随着水头的增大,CCL复合衬垫的防污性能逐渐地优于2m黏土。在10m水头作用下,CCL复合衬垫底部的100年浓度可比2m黏土小近一个量级。单层膜衬垫的防污性能较差,不适合作为填埋场的衬垫系统。控制填埋场复合衬垫的施工质量和渗滤液水头尤为重要。  相似文献   

4.
The aim of this study is to develop empirical equations to predict the liquid leakage rate through a composite liner comprising a geomembrane and a geosynthetic clay liner (GM/GCL) underlain by a free draining boundary and having a circular or a longitudinal defect in the geomembrane. For this purpose, an intensive numerical experimental program was conducted where different defect geometries and flow transport characteristics were studied to simulate most of the conditions likely to exist in practice in such type of composite liners. The results are presented in a dimensionless form to generalize the observed behaviour and to give more insight on the factors that control the leakage behaviour. Furthermore, the results are also used to develop empirical equations for predicting the rate of leakage. An artificial intelligent approach referred to as General Method of Data Handling (GMDH) was used for this purpose. The main advantage of the proposed leakage equations is their validity for different flow patterns as the effect of defects geometry and flow characteristics of the composite liner components are already embedded in the development of the equations. However, their validity is limited to the ranges of the dimensionless parameters that were used to develop them.  相似文献   

5.
There is an increasing need for engineered liners to prevent the escape of leachate and to control the migration of landfill gas. This has been influenced by new European and UK legislation and codes of practice.
General principles of site design are explained, followed by a review of the advantages and disadvantages of different liner systems, including mineral liners (natural clay, mudrocks and soil/bentonite admixtures), geomembranes and composite liners.
The need for conservative factors of safety in site design and high standards of quality control, involving full-time supervision and independent certification of the installation works, are considered essential to ensure the effectiveness of the barrier.
There is no one ideal liner material. Composite mineral/geomembrane liners provide the highest degree of security against leakage and, as such, should be considered as 'the norm'rather than for use only in particularly high-risk situations.  相似文献   

6.
挥发性有机化合物在复合衬里中的一维扩散解   总被引:5,自引:0,他引:5       下载免费PDF全文
土工膜和粘土衬里组成的复合衬里已广泛用于填埋场的防渗。有机挥发性化合物在复合衬里中迁移时,其主要的机理是分子扩散作用。本文建立了有机挥发性化合物在复合衬里中的一维扩散模型,并得到了解析解。将该解析解和以往给出的数值解法作了比较,发现两者得到的结果较为接近,从而验证了本文解的可靠性。基于本文计算模型,分析了三种常用复合衬里对挥发性有机化合物的防渗性能。研究发现对于挥发性有机化合物甲苯,土工膜和GCL组成的复合衬里的浸出液总量要比土工膜和较厚粘土衬里组成的复合衬里大好几个量级。  相似文献   

7.
Landfill closures often require a somewhat different set of properties for synthetic liners than do landfill bottom liner installations. In particular, cap design usually presents the geotechnical engineer with greater concerns regarding long-term slope stability and accommodation of differential settlement. Friction between synthetic liners and materials contacting those liners, multiaxial elongation, and flexibility increase in importance. Since leachate does not contact the liners, chemical resistance becomes less important. Resistance to the components of landfill gas is, in most cases, all that is necessary.

As a result, synthetic liners with a textured surface to improve friction angles, and very low density polyethylene (VLDPE) geomembranes are becoming very attractive to geotechnical engineers. They provide considerable improvement in those areas which are important for cap installation. These materials, however, behave differently in standard index and performance testing of geomembranes, when compared with traditional polyethylene liners. These behaviors and differences are important for geotechnical engineers to understand. They are discussed in this paper.  相似文献   


8.
The paper discusses the mineralogical and chemical stability of the Oxford Clay as a landfill liner for the containment of domestic waste. The results from a series of batch equilibrium experiments with the mudrock and a synthetic leachate are compared with samples of a liner cored from a 15-year-old site in the Formation. The effects of leachate on the Clay include mineral dissolution, exchange of cations, particle-size reduction and collapse of illite-smectite. In situ mixed-assemblage mineral liners, such as the Oxford Clay, are capable of attenuating leachate components and buffering acid leachates whilst the predominant clay minerals, i.e. illite and kaolinite, remain stable. Alterations to the mineralogy and chemistry of the samples resulting from both short-term and long-term exposure to leachate are discussed with reference to the implications to landfill practice.  相似文献   

9.
In the late 1970s and early 1980s, environmental regulations were upgraded in a general national movement to effect secure management of our municipal and residual solid wastes. The new regulations required varying combinations of natural and/or synthetic barrier and drainage layers to prevent the unrestricted release of contaminants.

The acceptable barrier materials included synthetic flexible membrane liners (FMLs) of various types. One of those most commonly used has been high-density polyethylene (HDPE) geomembrane. HDPE has been selected because of its good chemical resistance characteristics, among others. Background compatibility testing has shown the HDPE geomembrane to be extremely resistant to the leachates that are generated by municipal and residual solid waste landfills. The background testing for design has generally been based on relatively short-term tests that are conducted under extreme conditions to ‘forecast’ service life.

Recently, a municipal solid waste landfill double liner system that was constructed in 1988 was exhumed. The HDPE geomembranes of this liner system had been exposed to varying degrees of leachate since 1989. Samples of the HDPE were extracted from the in-place liner system and were laboratory-tested for physical, mechanical and endurance properties. The selected suite of tests duplicated the test protocol conducted in 1988 as part of the liner system construction quality assurance (CQA) program.

The results of this testing show that the HDPE properties are still within the range of data generated by the original testing in 1988. No degradation in properties was indicated by this testing program. The HDPE had been exposed to the leachate, methane, and static and dynamic stresses for approximately 8 years. The results of this test program support the design selection of HDPE as the synthetic barrier component of this landfill liner system.  相似文献   


10.
This paper focuses on the quantification of flow rates at interfaces in composite liners using numerical simulations that explicitly take into account of the non-uniformity of the interface thickness. A new methodology is presented to obtain the accurate spatial distribution of interfaces in laboratory tests, in a 1-m-diameter device where flow was previously measured. The method is based on a multi-molding protocol, adopted from studies on fracture aperture measurements in rocks. The interface aperture data is been used to numerically simulate the flow in interfaces. Comparison of the numerical and experimental results shows that the simulated flow in the interface of a composite liner has similar hydrodynamic features to those observed. The analysis of fluid displacement in the interface shows that a flow channelling phenomena, caused by the existence of connected apertures linking the defect in the geomembrane to the boundary, is a key mechanism for leakage in composite liners consisting of a geomembrane and a compacted clay liner. The influence of the defect location vis-à-vis distribution of interface apertures on the flow rate is demonstrated.  相似文献   

11.
The development and use of prefabricated bentonite clay liners is a relatively recent development, even for a technology as young as geosynthetics. There are four currently available commercial products, each of which consists of essentially dry bentonite clay agglomerates (with or without a dry, but water soluble, adhesive) placed on a geotextile or geomembrane carrier layer. Often a covering geotextile is used above the clay, and for two of the products, the entire ‘sandwich’ is needled throughout.

For landfill liner systems, the major use of these materials appears to be as the lower component of a composite primary liner. This use is particularly interesting in the light of response action plans (RAPs) which are being required by many regulating agencies. For landfill closure systems, these materials can readily form the lower component of a composite cap system. Of interest here is their possible capacity to follow subsidence of the landfill and their ability to deform in an out-of-plane manner.

With the newness and potential of prefabricated bentonite clay liners, however, comes a number of questions. This paper attempts to present these questions and the currently available answers regarding the various products. In concludes by giving a number of suggestions and cautions for field placement based on the authors' experiences to date.  相似文献   


12.
通过三种不同材料堆体的局部沉陷模型试验发现局部沉陷条件下应变硬化材料可能产生"自支撑"现象。利用模型试验和退化情况下的解析解验证了数值分析模型模拟应变硬化材料堆体局部沉陷问题的有效性。在此基础上比较了采用不同垃圾应力应变模型的分析结果,考虑堆体材料应变硬化的复合指数模型和线弹性模型计算得到的沉陷区土压力明显小于与之对应的摩尔-库伦模型计算结果,采用传统摩尔-库伦模型计算得到的沉陷区衬垫系统挠曲变形和应变值偏大,因而针对砂土材料的Giroud(1990)Trapdoor土拱效应理论应用于垃圾堆体局部沉陷分析时存在一定的局限性。进一步分析了各种参数对衬垫系统表面土压力和变形的影响,发现沉陷区衬垫系统最大挠度和最大应变随垃圾堆体高度的增加而增加,随垃圾堆体模量和加筋体刚度的增加而减小。最后提出应变硬化垃圾堆体在局部沉陷条件下衬垫系统土工膜的应变计算和加筋层的设计方法,对于垃圾填埋场衬垫系统抗局部沉陷设计具有一定的指导意义。  相似文献   

13.
某填埋场垃圾堆体边坡失稳过程监测与反分析   总被引:3,自引:0,他引:3  
某填埋场是国内首批在场底铺设复合衬垫系统的大型卫生填埋场,该场垃圾坝前堆体边坡于2008年6月连续强降雨期间发生失稳事件。介绍该堆体边坡失稳过程的现场监测结果,包括坡面水平位移、深层侧向位移和渗滤液水位。基于监测数据,开展堆体边坡稳定性反分析工作,探讨复合衬垫系统界面抗剪强度取值方法,提出抽排竖井迫降水位、铺膜防渗等应急抢险措施。现场监测和理论分析结果表明:堆体边坡中高渗滤液水位是导致其失稳的关键因素,堆体边坡水平位移速率和渗滤液水位高度呈明显正相关关系;该堆体边坡失稳模式是沿场底复合衬垫系统中软弱界面的深层滑移;斜坡场底上复合衬垫系统在滑移过程中发生位移-软化效应,其界面强度介于峰值强度和残余强度之间;抽排竖井迫降水位是最直接、有效的应急抢险措施。  相似文献   

14.
The hydrothermal behaviour of single and double composite liners subjected to elevated temperatures is examined. Particular interest is given to the effect of the presence of wrinkles in the geomembrane (GMB) as well as defects, and the existence of a gap between the primary and the secondary liners caused by the presence of a leak detection system. Heat flow resulting from elevated temperature was found to be mainly influenced by the size of the air-filled gaps present within the composite lining systems. The larger the air-filled gap size, the lower was the heat flow through a barrier system. The presence of a leak detection layer (i.e., large air-filled gap) and GMB layers were found to be the primary factors to reduce heat flow substantially through the lining systems. Therefore, the presence of a leak detection layer combined with a secondary GMB can improve the overall thermal insulation capacity of a double liner system, minimise heat flow through the secondary liner and offer the possibility of protecting the GCL (if present) and the subgrade from possible heat induced drying/desiccation. A leak in the geomembrane can minimise the gain in thermal insulation. However, this effect can be reduced if the liquid is regularly pumped out.  相似文献   

15.
In composite liners made of geomembrane (GMB)-geosynthetics clay liners (GCLs), maintaining bentonite in the GCL in a suitably hydrated state is critical for their performance. Hydration of GCL from subsoil, following industry best practice, is time consuming and conditional on suitable water chemistry in subsoil. In addition, under thermal gradients, dehydration occurs, with moisture migrating downwards to the subsoil, leading to the development of cracks in the bentonite and hence loss of performance.Two novel ideas are proposed in this paper, namely hydration of GCLs by artificial irrigation and hydraulic separation of the liner system from the underlying subsoil. Three new composite liner designs allowing for actively irrigating a geosynthetic clay liner (GCL) through a geocomposite layer were investigated. In two of the three designs, the hydraulic connection between the GCL and the subsoil was broken by placing an additional GMB between them. The new designs were tested in column experiments under 20 kPa overburden pressure and temperatures of up to 78 °C applied to the top of the liner. The performances of the new designs were compared to that of a standard GCL-GMB design where GCL was allowed to hydrate from a well-graded sandy subsoil. Three scenarios for the staging of hydration and thermal load application were investigated.Under active hydration of the composite liners, it took less than 14 days for the GCLs to reach a gravimetric water content ω of 110–130%, compared to 49 days taken to reach ω~95% under hydration from the subsoil. GCLs in the new designs in which the hydraulic connection with the subsoil was broken, remained well-hydrated (ω>100%) after 14 days of heating and no cracks appeared in the bentonite. On the other hand, the GCL in the conventional design experienced severe desiccation under the same conditions. The new designs hence offer a viable solution to the problem of slow hydration and/or thermal desiccation of GCLs.  相似文献   

16.
Torsional ring shear tests were performed on composite specimens that simulate the field alignment of municipal solid waste (MSW) landfill liner and cover system components. Simultaneous shearing was provided to each test specimen without forcing failure to occur through a pre-determined plane. Composite liner specimens consisted of a textured geomembrane (GM) underlain by a needle-punched geosynthetic clay liner (GCL) which in turn underlain by a compacted silty clay. Hydrated specimens were sheared at eleven different normal stress levels. Test results revealed that shear strength of the composite liner system can be controlled by different failure modes depending on the magnitude of normal stress and the comparative values of the GCL interface and internal shear strength. Failure following these modes may result in a bilinear or trilinear peak strength envelope and a corresponding stepped residual strength envelope. Composite cover specimens that comprised textured GM placed on unreinforced smooth GM-backed GCL resting on compacted sand were sheared at five different GCL hydration conditions and a normal stress that is usually imposed on MSW landfill cover geosynthetic components. Test results showed that increasing the GCL hydration moves the shearing plane from the GCL smooth GM backing/sand interface to that of the textured GM/hydrated bentonite. Effects of these interactive shear strength behaviors of composite liner and cover system components on the possibility of developing progressive failure in landfill slopes were discussed. Recommendations for designing landfill geosynthetic-lined slopes were subsequently given. Three-dimensional stability analysis of well-documented case history of failed composite system slope was presented to support the introduced results and recommendations.  相似文献   

17.
陈云敏  高登  朱斌 《岩土工程学报》2009,31(7):1020-1029
在大三轴固结排水剪试验研究的基础上,提出了城市固体废弃物(MSW)的复合指数应力–应变模型。该模型参数少且有明确的物理意义,既可反映MSW在小应变情况下的非线性变形特性,也可反映其在大应变情况下的明显应变硬化特性。采用有限差分程序FLAC内置的Fish语言将复合指数应力–应变模型耦合入FLAC程序,并通过三轴压缩试验数值模拟得到了验证。最后利用该模型分析了某填埋场在竖向扩建堆体荷载作用下的应力压缩沉降、侧向变形以及新老填埋场交界面处中间衬垫系统的应变。结果表明:复合指数模型的计算结果总体上位于莫尔–库仑模型和邓肯–张模型之间;中间衬垫系统的拉伸应变可能导致压实黏土层发生破坏。  相似文献   

18.
《Soils and Foundations》2007,47(3):517-532
The objective of this paper is to examine the influence of geogrid layer on the integrity of clay liners of landfills. A series of centrifuge model tests were performed on model clay liners subjected to non-uniform settlements with and without a geogrid layer embedded within the top one-third portion of the clay liner moist-compacted on the wet side of its optimum moisture content at 40 g. The model clay liner material has been selected in such a way that it envelopes the material characteristics of the clay liners, which are used for constructing an impermeable barrier in a lining system. By maintaining type and location of the geogrid within the clay liner as constant, the thickness of clay liner is varied to check the possibility of reducing the thickness of a geogrid reinforced clay liner. Digital image analysis technique was employed to ascertain the initiation of cracking and to compute strains both on the surface and along the cross-section of the clay liner with and without any geogrid layer. It was observed that clay liners compacted at moulding water content towards wet side of their OMC found to experience multiple cracking at the onset of non-uniform settlements. Contrary to this, geogrid reinforced clay liner was observed to sustain large distortions and experience only tiny cracks limited up to a location of a geogrid. With an increase in thickness of the clay liner reinforced with a geogrid, geogrid reinforced compacted clay liner was observed to retain its integrity and restrains cracking completely.  相似文献   

19.
In engineering practice, the majority of the damaged utility or sewage pipelines are structurally safe, but due to the strict hydraulic requirements they require lining. For pipelines below groundwater table, liners should withstand safely the external groundwater pressure. Besides, liners are expected to carry external pressure associated with pumping of the grout around the liner to fill any gaps between the liner and its host pipeline.The critical external pressure at which the liner may buckle or become unstable has been the subject of many studies. Previous research work has always focused on the effect of global imperfections (such as ovality, loose-fit and wrinkle) on the stability of liners. Meanwhile, there is a lack of information regarding the influence of three-dimensional local imperfections on the stability of liners. The current paper reports on a numerical study that investigates the effect of various geometric parameters of local wavy imperfections on the elastic buckling pressure of cylindrical liners. New formulae based on the results of the study are suggested and may contribute to the update of current design specifications of cylindrical liners. The results are expected to help researchers to design for future experimental investigations to provide more insights into stability and behavior of locally imperfect liners.  相似文献   

20.
Lining of a pipe with a polymeric liner is a viable trenchless technology for rehabilitating sewer pipelines. Polymeric liners are typically installed within the deteriorated segments of a sewer line, from one access hole to the next, to essentially create a new pipe within the old pipe without the need for excavation and removal. However, some concerns exist regarding the need to grout or seal the joints where the new liner connects with access holes and laterals. The purpose of this study is to provide some insight into the degree of fluid migration into, or from, the system at these connecting points under simulated field conditions. Four groups of three similar vitrified clay pipelines were lined with different types of deformed–reformed or fold-and-form (DR/FF) liners and cured-in-place-pipe (CIPP) liners then tested to assess the conditions of the annular space between the liners and the host pipe. Fluid migration was detected around all liners and flow rates in the annular space increased with the head difference between the upstream and downstream ends of the test pipelines. No significant changes were observed in the flow rates within the annular space in the tested pipelines over the eight-week testing period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号