首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
四川盆地埋深3500 m以浅五峰组—龙马溪组超压页岩气已实现规模效益开发,目前正在探索埋深3500~4000 m深层高温高压页岩气藏有效开发技术。Haynesville为北美典型高温高压深层页岩气藏,与国内中浅层开发区和深层探索区具备一定对比性,其开发技术政策可供参考借鉴。针对Haynesville页岩气藏2009—2019年4800口完钻气井的钻井、压裂、生产和成本参数进行系统统计分析,研究表明不同埋深范围气井水平段长、用液强度、加砂强度逐年上升,段间距逐年缩小,百米段长EUR保持稳定。2019年,埋深3000~3500 m气井平均测深6306 m、水平段长2804 m、钻井周期35 d、段间距42 m、用液强度57.2 m3/m、加砂强度6.12 t/m、百米段长首年平均日产气1.01×104 m3/d、百米段长EUR为1038×104 m3、单井总成本893×104 USD、建井周期159 d,单位钻压成本产气量30.7 m3/USD。埋深3500~4000 m 气井平均测深6257 m,水平段长2385 m、钻井周期28 d、段间距42 m、用液强度51.1 m3/m、加砂强度5.77 t/m、百米段长首年平均日产气1.15×104 m3/d、百米段长EUR为1324×104 m3、单井总成本906×104 USD、建井周期201 d,单位钻压成本产气量34.8 m3/USD。随水平段长增加,百米段长EUR稳定在1000×104 m3~1300×104 m3,单位钻压成本产气量呈上升趋势,水平段长具备继续增加空间,第二年产量递减率由70.6%下降至目前50.6%。借鉴Haynesville页岩气藏开发实践,四川盆地埋深2000~3500 m以浅规模开发区可继续探索长水平段气井高产模式。3500 m以浅规模开发区和3500~4000 m深层探索区均可借鉴“控压”减缓产量递减方式提高气井最终可采储量。  相似文献   

2.
该文综合了地质路线调查、机民井(地热井)地温测量、水化学分析、物探剖面测量等工作成果,对冀东燕山中段的地热地质条件进行了分析,对区内地热资源潜力进行了初步评价,并对下一步工作提出了建议。冀东燕山中段地热异常区主要分布在肖营子岩体边部,地热流体的分布、运移和储存受断裂控制;热储岩性为片麻岩或花岗岩,基本无盖层。热储深度3000~3200 m,温度105~110℃,热水形成时间12.3~27.8a。地下流体化学成分主要受肖营子岩体影响。热量来自于地壳深部。活动性深大断裂及其次级构造交汇部位、背斜核部、高热导率且具有一定延深的岩体或隐伏岩体与低热导率地层接触带附近、区域地下水排泄区等为山区地热形成有利地段。通过估算,研究区内各地热异常区地下热水总可开采量为207.03×104 m3/a,其产生的能量为21.59×1010 kJ/a,相当于7367.59 t标煤或5156.29 t石油产生的能量。为今后研究区内地热能勘查、开发利用规划、采矿权设置等提供了技术支持。  相似文献   

3.
能否用有机化合物作基岩的固结灌浆材料,是我们研究化学灌浆的出发点之一。本文叙述了用甲基丙烯酸酯类化学灌浆材料,对一坝址石英闪长岩的弱风化带进行团结灌浆试验,通过试验所测得的岩石变形模量由26.3×104kg/cm2提高到47.4×104kg/cm2,静力弹性模量由29.6×104kg/cm2提高到57.9×104kg/cm2,声波速度Vp由4894m/s提高到5272m/s,单位吸水率ω由0.0351/(min·m·m)降低到0.0121/(min·m·m),缝面的粘结强度由零提高到13.4kg/cm2。  相似文献   

4.
张维  闫晋龙  马畅  孙健  张宁 《矿产勘查》2020,11(12):2647-2652
新商断裂是一条几乎横贯河南的区域性深大断裂,构成了济源-开封凹陷和通许凸起两大地热单元的边界。在其及影响带附近分布着新乡-延津、兰考、民权、宁陵-商丘等大型地热田,蕴藏着丰富的中深层地热资源。该文通过分析新商断裂的构造特征和地热流体特征,系统分析了深大断裂对地热资源的控制作用,以商丘项目为例分析了其资源潜力。区内地下热水的分布特征严格受控于新商断裂的展布方向,地下热水的温度取决于盖层的厚度及围岩的放射性含量,地热资源潜力巨大,地热可采资源量约140.37×104 m3/a,地热流体含热能量71.94×1012 J/a,折合标准煤2454.6 t/a,可减少CO2排放5856.8 t/a,该研究为今后在该地区开展地热资源勘查工作具有一定的指示意义。  相似文献   

5.
孙贵萍  祁泽学  杨丽茜  温川 《矿产勘查》2022,13(11):1695-1704
格尔木河冲洪积扇区有着巨厚的第四系砂卵砾石层,形成了良好的储水空间,研究其含水层系统特征、地下水循环演化及资源开采潜力对水资源合理开发利用具有重要指导意义。本文基于地质调查、水文地质钻探、动态长观等资料,将含水层系统进行了划分,并对地下水的循环演化进行了阐述。运用补给量总和法、排泄量总和法以及断面径流量法对研究区地下水天然资源量和开采潜力进行了计算。结果表明:研究区河水与地下水经历三次转换,主要模式分为:中高山区模式、冲洪积扇区模式、冲湖积平原区模式;含水层系统可分为:局部循环系统、中间循环系统和区域循环系统三个子系统。研究区地下水天然资源量为206.75×104 m3/d,开采潜力达103.38×104 m3/d,可为下游的盐湖产业基地提供水源保障。  相似文献   

6.
采用自研足尺寸木质梁蠕变测试系统,对昆明室内自然环境下2种实木矩形梁和3种木工字梁进行了200 d蠕变测试,并分析其含水率与相对湿度的关系.结果表明:木质梁含水率的变化明显滞后于相对湿度的变化,且其在吸湿段的滞后大于解吸段;2种实木矩形梁和3种木工字梁在低湿波动、高湿波动、湿度持续波动上升和湿度持续波动下降这4类相对湿度典型变化时段的平均蠕变速率分别为8.839×10-2、1.183×10-2、-1.730×10-2/-3.598×10-2、7.424×10-2/9.007×10-2 mm/d,机械吸附蠕变特征明显;7条木质梁的FB90(加载90 d后蠕变挠度与加载1 min后蠕变挠度的比值)小于1.60,满足承重用梁的抗蠕变要求;实木矩形梁的抗蠕变性能优于木工字梁.  相似文献   

7.
通许凸起地热资源丰富且埋藏较浅利于开采,已经成为当地冬季主要的洗浴、取暖用热源。目前,孔隙地热资源已进行了充分勘查与研究,而针对下部岩溶热储的赋存规律、分布特征和资源潜力的系统性研究相对薄弱,在一定程度上制约了通许地区的地热资源的综合性开发和利用。本文以河南省通许凸起区域地质构造条件为基础,结合地球物理勘探、地热钻探成果,分析通许凸起中部(通许段)下古生界岩溶热储地热类型、热储结构、岩性厚度以及空间分布特征,评价了下古生界岩溶地热流体质量,评价了研究区内下古生界岩溶热储开发利用潜力。研究认为通许凸起中部地区下古生界岩溶热储表现出以传导型为主低温地热田特征,热源供给主要为大地热流传导方式。中奥陶统马家沟组岩溶发育好于寒武系,地热水化学类型为Cl-Na型,研究区3000 m深度下古生界岩溶热储可采热能9.94×1010 J。NE向F1断裂以东是岩溶热储发育,有较大开发利用潜力区段,该区段下古生界岩溶热储可采热能约为7.51×1010 J,占全区可采热能的75%,该区段城镇人口密集、地热需求量大。研究成果对未来推进城镇地热供暖具有一定理论参考意义。  相似文献   

8.
地埋管地源热泵空调系统经济性分析与设计优化   总被引:1,自引:0,他引:1  
本文以北京地区浅层地温能资源开发利用现状调查为基础,从调查结果中选取有代表性的昌平区某地埋管地源热泵供暖改造工程为实例.对该地埋管地源热泵系统的技术性.经济性进行分析。并在此基础上。对该地源热泵系统设计提出了合理化建议。  相似文献   

9.
丁正云  范爱玲  黄渊孝 《矿产勘查》2023,14(12):2366-2376
广东龙门永汉地区地热资源储量丰富,对该地区水热型地热资源的赋存特征及开发利用与保护进行研究,对更好开发利用其地热资源具有重要意义。本文通过地热地质调查、钻探工程及降压试验等方法,对该地区地热田的地热地质条件进行了分析,评价了地热流体质量并计算了地热资源量。研究表明,较高的区域背景热流和高生热率的花岗岩体是永汉地区热储的良好热源,大气降水沿断裂带向深部渗透,经深部循环,接受热量加热形成热水后以沿升流通道向上运移形成水热对流系统,并在有利的地段聚集形成地热田。地热资源量4225.93×1012 kJ,地热流体可开采量13980 m3/d,加权平均水温57.8~72.4℃。地热流体体质量较好,主要为HCO3-Na型中性低矿化度的淡温热水,其开发利用方向为理疗洗浴、采暖、农林渔业等,可进行梯级开发利用。研究成果可为永汉地区水热型地热资源的开发利用与保护提供依据。  相似文献   

10.
沈阳现有供暖面积1.58×10^8m^2,其中公建约4000×10^4m^2,其余为民建。公建、民建年增竣工量都大于1000×104m^2。到2010年供暖面积将超过2×10^8m^2。供暖和制冷的建筑耗能巨大,对大气环境造成一定污染。  相似文献   

11.
李维静  李明骏  古军 《矿产勘查》2019,(8):2001-2007
通过对武蛟地热田已有钻孔及区域地热地质资料,结合前人勘查资料,分析了武蛟乡地热田区域地质特征、地温场分布特征、地热水水化学特征及补径排条件,说明武蛟地热属深循环途中正常大气热流加热火山型地热系统,地热成因模式为断裂岩溶复合型,地热田的热储模型为断裂对流型带状热储。采用热储法计算出研究区内控制级的允许放热量为6. 40×10~5Kca L·h~(-1),推断级的允许放热量为9. 08×10~5Kca L·h~(-1);研究区内年可开采水量为63. 02×10~4m~3。初步摸清武蛟地热田分布规律及资源量,为武蛟地热田地热资源的合理开发利用提供科学依据。  相似文献   

12.
针对天津市滨海新区,对浅层地热能利用方式(地下水地源热泵、地埋管地源热泵)适宜性分区评价进行探讨,获得了两种浅层地热能利用方式的分区范围和面积。该地区只有极少数区域适宜采用地下水地源热泵,绝大部分区域适宜或较适宜采用地埋管地源热泵。  相似文献   

13.
The Munich Gravel Plain has been studied under various aspects, but there has been no detailed hydrogeological underground model of the entire city area. As a result of the ??urban heat-island?? effect, groundwater temperatures reach 18?°C and locally exceed 20?°C. This aquifer is therefore suitable for systematic and large-scale near-surface geothermal energy exploitation. The goal of this study was to establish the first detailed hydrogeological model of the city of Munich, as a basis for estimating the geothermal potential. A database of more than 20,000 drill holes was available, of which 730 were selected, interpreted and processed. As a result, 26 east-west cross sections were constructed, showing the geometry and structure of the aquifer and the position of the unconfined water table during low, average and high-water conditions. Based on these profiles and basic hydraulic considerations, a groundwater flow rate of about 3?m3/s was established. Results of this study indicate a high potential for thermal groundwater use and corresponding reductions of heating oil consumption and CO2 emissions. At the same time, thermal rehabilitation of the overheated urban groundwater could be achieved. The quantification of this geothermal potential and the space-time optimisation of thermal groundwater use for heating and cooling require a detailed analysis of groundwater temperatures and numerical groundwater flow and heat transport modelling.  相似文献   

14.
当前对地源热泵低温热源的认识存在分歧,并有将浅层地能资源化的趋势.通过对土壤源热泵低温热源认识过程的回顾,结合我国地源热泵发展的实际情况,提出了浅层岩土蓄能加浅层地温能才是地源热泵可持续利用低温热源的观点.认为应基于浅层岩土层储能的思路去研究和发展地源热泵.根据冬季供热的需要和当地的地质构造决定夏季的蓄热量,并采用先进技术保证热能蓄存.  相似文献   

15.
This paper is performed to analyze the performance of underground thermal storage in a solar-ground coupled heat pump system (SGCHPS) for residential building. Based on the experimental results, the system performance during a longer period is simulated by the unit modeling, and its parametric effects are discussed. The results show that the performance of underground thermal storage of SGCHPS depends strongly on the intensity of solar radiation and the matching between the water tank volume and the area of solar collectors. Compared with the solar radiation, the variations of the water tank temperature and the ground temperature rise lag behind and keep several peaks during the day time. For the case of Tianjin, the efficiency of underground thermal storage based on the total solar radiation and absorbed solar energy by the collectors can reach over 40% and 70%, respectively. It is suggested that the reasonable ratio between the tank volume and the area of solar collectors should be in the range of 20–40 L/m2.  相似文献   

16.
Energy consumption for the commercial buildings has increasingly gained attentions, due to the significant electricity consumption and peak power demand. To solve this problem, this paper focuses on performance on the Ground Source Direct Cooling (GSDC) system integrated with a Water Storage Tank System (WSTS) in the summer, which directly utilizes the low-grade energy to supply high temperature water for the radiant floor cooling system and make full use of the electric rate difference between on-peak and off-peak periods. In summer, the indoor air temperature is controlled between 23 and 26 °C, resulting in a comfortable thermal environment. The total cooling capacities in 2014 and 2015 were 32.6 kWh/m2 and 30.7 kWh/m2, respectively. The annual energy consumptions for Electricity Unit Intensity (EUI) in 2014 and 2015 were 33.0 kWh/(m2·yr) and 32.1 kWh/(m2·yr), and the cooling energy consumptions only consumed 4.19 kWh/(m2·yr) and 4.55 kWh /(m2·yr), respectively. The annual operating cost of this cooling system only reaches 9 yuan/(m2·yr) through the analysis of 5 years’ operation. Compared to a conventional air cooled heat pump system, this cooling system has a larger initial cost, but its recovery period is less than 4.3 years, due to the extremely low operating cost. Overall, this GSDC system integrated with WSTS in the summer has remarkable advantages in thermal comfort and energy efficiency.  相似文献   

17.
The world potential for geothermal energy represents a substantial augmentation to energy supplies at costs competitive with petroleum at present prices. About 20 nations have geothermal projects or experiments underway and at least another 25 nations have geothermal potential. Current uses of geothermal energy include space heating and cooling, greenhouses. Soil warming, kiln drying, and electric energy production. Numerous new applications appear to be feasible, such as environmentally controlled livestock production, absorption refrigeration, and industrial processing in such areas as pulp and paper, wood chemicals, sugar beets, and corn products. Geothermal energy can be applied with state-of-the-art technology, with improvement in corrosion control and down-hole pumping. Incentives may be needed to stimulate geothermal investment to overcome the higher front-end costs of geothermal installations.

Geothermal energy is a promising future source of electric energy, ambient heat, and direct thermal uses. Currently in the world today, geothermal energy supplies about 1.500MWe per year in electric power and the equivalent of 7,000MWe per year in thermal energy utilization, mostly for space heating. Within the next three decades, the world supply of electric energy from geothermal energy is estimated to increase to about 200,00OMWe/yr. The United States has about one-tenth of the world's geothermal resources and should have about 20,000MWe/yr. on line in about thirty years.

The amount of thermal heat utilization from geothermal sources is somewhat problematical in the future, due to cost factors and the localized nature of geothermal applications. Transmission heat losses of geothermal fluids limit transmission lines to about ten miles or less, which means that thermal applications must be near to the geothermal source to be economical. On the positive side, however, there are many more lower temperature (under 200 degrees C) geothermal well sites In the world than there are high temperature sources capable of generating electric power (which usually requires about 200 degrees C or higher) Assuming then that thermal applications can be maximized near the geothermal sources, the ambient heat utilization of geothermal energy has been estimated to be up to 60.000MWe/yr. equivalent in the United States, which could imply more than 600,000MWe/yr. equivalent in the world.

Seen in this light, geothermal energy is a useful augmentation to the alternate energy sources of the world. While the amount of geothermal energy may seem small relative to the 1 ¾ billion megawatts of installed electric generating capacity in the world, geothermal energy provides new capacity for economic growth which would otherwise be absent In the energy-constricted future. Moreover, geothermal energy is competitive in cost with fossil fuels at current petroleum prices for many applications [1]; and it has few technology problems since its technology is closely related to existing heat conversion methods. The main new problems in geothermal energy are corrosion control and downhole pumping, both of which appear to be manageable. Moreover, geothermal energy appears to have fewer environmental problems than either coal or nuclear power. Therefore, geothermal energy may well be looked upon as the next most immediate source of alternate energy.

Other alternate energy sources include wind and solar energy. Lower temperature solar energy, such as black-body or radiation absorption for water heating, is practical in the near term at cost premiums around 2 to 5 times natural gas. Passive solar radiation systems in home-building, which tie the structure into a large heat sink such as water columns or the subsurface floor, are also practical at a modest cost premium. Wind energy for electric power conversion costs about one order of magnitude more than fossil fuel or geothermal energy; and high temperature solar radiation, i.e. focused array towers, or solar energy cells cost about two orders of magnitude more than fossil or geothermal energy. In this perspective, then, geothermal energy appears to be among the early candidates for substantial development both for electric energy and direct thermal utilization.  相似文献   

18.
浅层土壤热作为一种新的能源,配合成熟的热泵技术形成的土壤源、水源热热泵系统,其与常规的供冷暖、制冷方式相比具有初投资低、运行费用低的特点。但这种技术由于个别技术问题和应用的区域限制,大面积推广仍存在困难。为此,针对浅层土壤热的应用原理、应用方法及初投资、运行费用等进行分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号