首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Acceptability of clean air and air polluted by building materials was studied in climate chambers with different levels of air temperature and humidity in the ranges 18–28°C and 30-70% relative humidity (RH). The acceptability of the air quality immediately after entering a chamber and during the following 20-min whole-body exposure was assessed by 36 untrained subjects who maintained thermal neutrality by modifying their clothing. The results confirm the significant decrement of the acceptability with increasing temperature and humidity, as shown in a previous study with facial exposures. The odour intensity was found to be independent of temperature and humidity. A linear relation between acceptability and enthalpy of air was again observed by this experiment. No significant difference was observed between the immediate acceptability and the acceptability during the following 20-min exposure, i.e., no adaptation took place. Both the immediate assessment of acceptability and the assessments during the 20-min exposure were independent of the air temperature and humidity to which the subjects were exposed before entering the chamber. The results further indicate that a notable decrement of the ventilation requirement may be achieved by maintaining a moderate enthalpy of air in spaces.  相似文献   

2.
Abstract The chemical and sensory emissions from five building materials (carpet, polyvinyl chloride (PVC) flooring, sealant, floor varnish and wall paint) were tested under different combinations of temperature and relative humidity in the ranges 18–28°C and 30–70% relative humidity (RH). The experiment was performed in a climate chamber where a specially designed test system was built to study emissions from the five materials. The test system could provide different temperatures and humidities of air around the materials, while the air, after being polluted by the emissions from the materials, could be reconditioned to 23°C and 50% RH for sensory assessments. The experiment was designed to separate the direct impact of temperature and humidity on perception from the impact on sensory emission. The study found little influence of temperature on the emissions from the five materials whether expressed in chemical or sensory terms. The effect of humidity was found to be significant only for the waterborne materials – floor varnish and wall paint. Compared with the direct impact of temperature and humidity on the perception of air quality, the impact of temperature and humidity on sensory emissions from the building materials has a secondary influence on perceived air quality.  相似文献   

3.
This study shows an approach to estimate odour intensity in an indoor environment with a multi-gas sensor system. The sensor system uses 38 non-specific gas sensors, each of which responds to a wide range of different volatile compounds. Due to the complexity of indoor air pollution, the study focuses on emissions of building products as one of the major contributors to indoor air quality. The system has been calibrated and tested, combining measurements from gas sensor systems and assessments of odour intensity by a human panel. To find a relation between the sensor signal and the odour intensity, a data processing model has been developed comprising a classification and a class-specific regression method. The model is able to map the odour intensity to the sensor signal pattern in order to predict the odour intensity caused by the investigated building products. Investigations with varying relative humidity have shown a significant influence by the humidity level, which will be considered for future measurements.  相似文献   

4.
Perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity were studied in a normally furnished office space (108 m3) ventilated with an outdoor airflow of 3, 10 or 30 L/s per person, corresponding to an air change rate of 0.6, 2 or 6 h-1. The temperature of 22 degrees C, the relative humidity of 40% and all other environmental parameters remained unchanged. Five groups of six female subjects were each exposed to the three ventilation rates, one group and one ventilation rate at a time. Each exposure lasted 4.6 h and took place in the afternoon. Subjects were unaware of the intervention and remained thermally neutral by adjusting their clothing. They assessed perceived air quality and SBS symptoms at intervals, and performed simulated normal office work. Increasing ventilation decreased the percentage of subjects dissatisfied with the air quality (P < 0.002) and the intensity of odour (P < 0.02), and increased the perceived freshness of air (P < 0.05). It also decreased the sensation of dryness of mouth and throat (P < 0.0006), eased difficulty in thinking clearly (P < 0.001) and made subjects feel generally better (P < 0.0001). The performance of four simulated office tasks improved monotonically with increasing ventilation rates, and the effect reached formal significance in the case of text-typing (P < 0.03). For each two-fold increase in ventilation rate, performance improved on average by 1.7%. This study shows the benefits for health, comfort and productivity of ventilation at rates well above the minimum levels prescribed in existing standards and guidelines. It confirms the results of a previous study in the same office when the indoor air quality was improved by decreasing the pollution load while the ventilation remained unchanged.  相似文献   

5.
《Energy and Buildings》2002,34(8):809-816
In the present study, the odour emission of a new HVAC-system in an office building of the Technical University of Berlin has been investigated. The system was built as part of a research project to develop an HVAC-system, which emits low pollution to the supply air. The odour intensity of the air before and after each component of the system was assessed by a human panel. The sources of odour emission inside the system should be localized.The system is equipped with a frequency-controlled fan to vary the airflow rate. Variances in the airflow rate can influence the odour intensity of the supply air due to changes in the odour emissions from the materials (velocity at the surfaces, friction) and the ratio of emitting substances from surfaces to the supply airflow (dilution of the emitted substances with outdoor air). In this study the influence of the airflow on the air quality of the supply air is investigated.Besides the odour emission inside the ventilation system the impact of the quality of the supply air on the indoor air quality in the ventilated rooms is of major interest. Therefore, the perceived air quality (PAQ) of the rooms was assessed by a trained panel in this study. The tests have been carried out with and without mechanical ventilation. Since the other pollution sources in the rooms emitted from building materials and furnishings did not change significantly during the measurement period, the differences in the assessments are mainly caused by the HVAC-system.  相似文献   

6.
Abstract The exposure-response relationship between the concentration of air pollutants and perceived air quality was studied for eight materials often found indoors and for a mixture of three of the materials. Samples of the materials were placed in a ventilated test chamber. The exhaust air from the test chamber was diluted with different rates of unpolluted air to obtain five different concentrations of polluted air. A sensory panel assessed the perceived quality of the five concentrations of polluted air. The exposure-response relationship differed between the materials and also from the corresponding relationship for human bioeffluents. The exposure-response relationships can be described by straight lines in a log-probit plot and be defined by two constants characteristic for each material. Determination of the two constants characterizing each material requires sensory assessments at least at two pollution concentrations. The sensory pollution load for a material may change with the pollution concentration in the air. The use of a simple measurement method based on a dilution system connected to a ventilated small-scale test chamber is proposed to characterize the emissions from materials in sensory and chemical terms.  相似文献   

7.
Natural materials of biological origin degrade over time and may emit odorous chemical compounds that can influence the perceived indoor air quality. The objective of this study was to investigate how the perceived air quality is influenced by emissions from building products with linseed oil compared with similar conventional synthetic products without linseed oil. Two types of linoleum, two types of wall paint and two types of floor oil were selected as examples of natural products containing linseed oil. The selected synthetic products were PVC floor covering, a water-based paint, and a synthetic floor oil. The emissions from the products were monitored over a one-year period in small ventilated test chambers. The odorous emissions were evaluated by sensory panel assessments of odour intensity and acceptability and by chemical analysis of the odour-active volatile organic compounds (VOCs) and carbonyl compounds. Odour-active VOCs in the emissions from one floor oil with linseed oil and two pure linseed oils were detected by gas chromatography combined with olfactometry (GC-O) and attempted identified with mass spectrometry (MS). The products with linseed oil influenced the perceived air quality more negatively than the similar synthetic products and the odour was persistent over time. It was found that the products with linseed oil did not qualify for the Danish Indoor Climate Label, because of the persistency of the odour. The results of the GC-O/MS investigations and VOC measurements indicated that an almost constant emission of odour-active VOCs with low odour thresholds resulted in the persistency of the odour. The VOCs probably originated from oxidation products from the linseed oil used as raw material. The study indicates that the acceptability of the emissions from the floor oil was influenced by the linseed oil used as raw material. It is therefore suggested that systematic use of less odorous linseed oils may improve the acceptability of the emission from products with linseed oils. The applied combination of sensory assessment of perceived air quality and GC-O/MS seems to be a useful approach in the effort to eliminate unwanted odours from building products.  相似文献   

8.
Thermal comfort, self‐reported acute health symptoms, cognitive performance, and physiological reactions were examined at four temperatures (26, 30, 33, and 37°C) at a relative humidity of 70%. Thirty‐two sub‐tropically acclimatized subjects experienced each condition for 175 minute, in balanced order, in a climatic chamber. The perception of heat gradually increased with increasing temperature, but the subjects felt hot only at 37°C. The temperature of 33°C was on average rated as acceptable and only just uncomfortable. The acceptability of air quality decreased linearly with increasing temperature. The intensity of acute health symptoms reported by the subjects increased with increasing temperature, but it was no more than moderate even at the highest temperature; dryness of skin and eye were alleviated. The eardrum temperature, skin temperature and moisture, heart rate, end‐tidal carbon dioxide, and weight loss increased significantly with increasing temperature, whereas the percentage of adjacent heart inter‐beat intervals differing by >50 ms decreased significantly. These results suggest that the perceived heat, self‐reported symptoms, and physiological reactions occurred concurrently. They show additionally that acclimatization to heat may shift the boundary of thermal discomfort to a higher temperature. The role of psychological adaptation and of the contextual aspects of this process still requires clarification in future experiments.  相似文献   

9.
The indoor air quality (IAQ) was measured in newly built Korean apartments before and after occupancy in a survey of 158 residences in 24-apartment complexes nationwide. Factors that might affect pollutant concentration, such as temperature, humidity, housing size, and duration of occupancy, were analyzed in relation to the measured concentrations. Average pollutant levels were consistent with the Ministry of the Environment's recommended standards; however, pollutant levels in some apartments exceeded the current standards. We found that the concentrations of formaldehyde and toluene often exceeded the more stringent guidelines that will soon be enacted. Our results suggest that stronger countermeasures are therefore required to control these two chemicals. The results show that the pollution concentration was generally proportional to temperature and humidity, but that, in some cases, the concentration measurements were inversely proportional to these two factors, and in a few others the relationship between these factors was not clear. Indoor air pollution readings were highest in the 30-pyeong apartments, followed by 10-, and 20-pyeong residences. The pollutant concentrations decreased to about half of their initial levels after one year of occupancy, but the concentration of formaldehyde in indoor air persisted for a longer period. The duration of the apartment's occupancy affected indoor air pollutant concentrations more so than other factors such as temperature, humidity, and apartment size.  相似文献   

10.
The relative importance of sensory air pollution, thermal load and noise was studied under controlled conditions in two identical environmental chambers. In one chamber subjects were exposed to various levels of either thermal load or poor indoor air quality. For each condition tested in this chamber, the subjects were exposed to a number of noise levels in an adjacent chamber with neutral thermal conditions and good indoor air quality in order to determine a noise level causing the same degree of discomfort. A total of 68 comparisons of the conditions in the two chambers were made by the same group of 16 subjects after one-minute exposure in each chamber. In the operative temperature range of 23–29°C, a 1°C change in operative temperature was found to have the same effect on human comfort as a change in perceived air quality of 2.4 decipol or a change in noise level of 3.9 dB. For levels of perceived air quality up to 10 decipol, a 1 -decipol change in perceived air quality had the same effect on human comfort as a change in noise level of 1.2 dB. A relationship between traffic noise level and percentage dissatisfied was established  相似文献   

11.
A laboratory study was performed to investigate the impact of the concentration of pollutants in the air on emissions from building materials. Building materials were placed in ventilated test chambers. The experimental set-up allowed the concentration of pollution in the exhaust air to be changed either by diluting exhaust air with clean air (changing the dilution factor) or by varying the area of the material inside the chamber when keeping the ventilation rate constant (changing the area factor). Four different building materials and three combinations of two or three building materials were studied in ventilated small-scale test chambers. Each individual material and three of their combinations were examined at four different dilution factors and four different area factors. An untrained panel of 23 subjects assessed the air quality from the chambers. The results show that a certain increase in dilution improves the perceived air quality more than a similar decrease in area. The reason for this may be that the emission rate of odorous pollutants increases when the concentration in the chamber decreases. The results demonstrate that, in some cases the effect of increased ventilation on the air quality may be less than expected from a simple dilution model.  相似文献   

12.
The effects of ventilation in computer classrooms were studied with university students (n = 355) in a blinded study, 31% were women and 3.8% had asthma. Two classrooms had a higher air exchange (4.1-5.2 ac/h); two others had a lower air exchange (2.3-2.6 ac/h). After 1 week, ventilation conditions were shifted. The students reported environmental perceptions during the last hour. Room temperature, RH, CO2, PM10 and ultra-fine particles were measured simultaneously. Mean CO2 was 1185 ppm at lower and 922 ppm at higher air exchange. Mean temperature was 23.2 degrees C at lower and 22.1 degrees C at higher air exchange. After mutual adjustment (temperature, RH, CO2, air exchange), measured temperature was associated with a perception of higher temperature (P < 0.001), lower air movement (P < 0.001), and poorer air quality (P < 0.001). Higher air exchange was associated with a perception of lower temperature (P < 0.001), higher air movement (P = 0.001), and better air quality (P < 0.001). In the longitudinal analysis (n = 83), increased air exchange caused a perception of lower temperature (P = 0.002), higher air movement (P < 0.001), better air quality (P = 0.001), and less odor (P = 0.02). In conclusion, computer classrooms have CO2 levels above 1000 ppm and temperatures above 22 degrees C. Increased ventilation from 7 l/s per person to 10-13 l/s per person can improve thermal comfort and air quality. PRACTICAL IMPLICATIONS: Computer classrooms are crowded indoor environments with a high thermal load from both students and computer equipment. It is important to control room temperature either by air conditioning, sun shields, or sufficiently high ventilation flow. A high ventilation flow is also crucial to achieving good perceived air quality. Personal ventilation flow should be at least 10 l/s. Possible loss of learning ability due to poor indoor air quality in university buildings deserves more attention.  相似文献   

13.
Human response to air movement supplied locally towards the face was studied in a room with an air temperature of 20 °C and a relative humidity of 30%. Thirty-two human subjects were exposed to three conditions: calm environment and facially supplied airflow at 21 °C and at 26 °C. The air was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 °C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend the applicability of personalized ventilation aiming to supply clean air for breathing at the lower end of the temperature range recommended in the standards. Providing individual control is essential in order to avoid discomfort for the most sensitive occupants.  相似文献   

14.
Abstract Why are we ventilating buildings and how much ventilation is required? These are the fundamental questions that engineers, architects and hygienists have tried to answer over the past two hundred years. Dramatic changes in the philosophy behind ventilation have occurred but during the last half century, buildings have been ventilated primarily to avoid discomfort caused by odorants and irritants in the air, i.e. to establish an indoor air quality that is perceived as acceptable for humans. This philosophy is still behind ventilation standards at present being revised in different parts of the world, although health effects are also being considered. The historical development will be briefly reviewed and common new trends in the revisions of European and American standards will be discussed. New data on the additivity of sensory pollution sources and on the impact of temperature and humidity will be reviewed. A new paradigm shift in the philosophy behind ventilation is predicted.  相似文献   

15.
The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 °C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 °C and relative humidity of 70%.  相似文献   

16.
The between perception of individual exposure to different environmental stimuli; microclimate, noise and especially particulate matter (PM) was examined. Microclimate, noise and PM were monitored during field surveys with 260 questionnaire-guided interviews at a road construction site and a traffic site on the UC San Diego campus. The overall comfort was determined primarily by the thermal environment. The air quality was considered to be poor by 42% of the interviewees at the construction site, which was burdened with higher PM counts and sound levels. Overall, higher PM concentrations were correlated with perception of poor air quality. Similarity between the overall air quality and how dusty it feels suggests that visual clues of PM, such as dust, affect the perception of air quality and pollution. The effect of medical or smoking history on the perceived air quality was also examined. People with a medical history of hay fever voted more frequently for poor air quality conditions than those without, whereas current smokers were the least sensitive to ambient air quality conditions. Through the exposure-response relationships between the various perception votes and PM, it was possible to predict perceived air cleanness using the PM count. Understanding the human assessment of environmental stimuli could inform the design and development of urban spaces, in relation to the allocation of uses and activities, along with air quality management schemes.  相似文献   

17.
Abstract Sensory irritation and odor effects of organic compounds in indoor environments are reviewed. It is proposed to subdivide volatile organic compounds (VOCs) into four categories: (i) chemically non-reactive, (ii) chemically 'reactive', (iii) biologically reactive (i.e. form chemical bonds to receptor sites in mucous membranes) and (iv) toxic compounds. Chemically non-reactive VOCs are considered non-irritants at typical indoor air levels. However, compounds with low odor thresholds contribute to the overall perception of the indoor air quality. Reported sensory irritation may be the result of odor annoyance. It appears that odor thresholds for many VOCs probably are considerably lower than previously reported. This explains why many building materials persistently are perceived as odorous, although the concentrations of the detected organic compounds are close to or below their reported odor thresholds. Ozone reacts with certain alkenes to form a gas and aerosol phase of oxidation products, some of which are sensory irritants. However, all of the sensory irritating species have not yet been identified and whether the secondary aerosols (ultrafine and fine particles) contribute to sensory irritation requires investigation. Low relative humidity may exacerbate the sensory irritation impact. Practical Implications Certain odors, in addition to odor annoyance, may result in psychological effects and distraction from work. Some building materials continually cause perceivable odors, because the odor thresholds of the emitted compounds are low. Some oxidation products of alkenes (e.g. terpenes) may contribute to eye and airway symptoms under certain conditions and low relative humidity.  相似文献   

18.
The influence of air humidification in aircraft, on perception of cabin air quality among airline crew (N = 71) was investigated. In-flight investigations were performed in the forward part and in the aft part on eight intercontinental flights with one Boeing 767 individually, equipped with an evaporation humidifier combined with a dehumidifying unit, to reduce accumulation of condensed water in the wall construction. Four flights had the air humidification active when going out, and turned off on the return flight. The four others had the inverse humidification sequence. The sequences were randomized, and double blind. Air humidification increased relative air humidity (RH) by 10% in forward part, and by 3% in aft part of the cabin and in the cockpit. When the humidification device was active, the cabin air was perceived as being less dry (P = 0.008), and fresher (P = 0.002). The mean concentration of viable bacteria (77-108 cfu/m(3)), viable molds (74-84 cfu/m(3)), and respirable particles (1-8 microg/m3) was low, both during humidified and non-humidified flights. On flights with air humidification, there were less particles in the forward part of the aircraft (P = 0.01). In conclusion, RH can be slightly increased by using ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. The cabin air quality was perceived as being better with air humidification. PRACTICAL IMPLICATION: Relative air humidity is low (10-20%) during intercontinental flights, and can be increased by using ceramic evaporation humidifier, without any measurable increase of microorganism in cabin air. Air humidification could increase the sensation of better cabin air quality.  相似文献   

19.
In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty‐six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant‐controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant‐controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air‐conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates.  相似文献   

20.
A 21-seat section of an aircraft cabin with realistic pollution sources was built inside a climate chamber capable of providing fresh outside air at very low humidity. Maintaining a constant 200 l/s rate of total air supply, i.e. recirculated and make-up air, to the cabin, experiments simulating 7-h transatlantic flights were carried out at four rates of fresh outside air supply--1.4, 3.3, 4.7, and 9.4 l/s per person (3, 7, 10, and 20 cfm/person)--resulting in humidity levels, ranging from 7% to 28% relative humidity (RH). Four groups of 16-18 subjects acted as passengers and crew and were each exposed to the four simulated flight conditions. During each flight the subjects completed questionnaires three times to provide subjective ratings of air quality and of symptoms commonly experienced during flight. Physiological tests of eye, nose, and skin function were administered twice. Analysis of the subjective assessments showed that increasing RH in the aircraft cabin to 28% RH by reducing outside flow to 1.4 l/s per person did not reduce the intensity of the symptoms that are typical of the aircraft cabin environment. On the contrary, it intensified complaints of headache, dizziness, and claustrophobia, due to the increased level of contaminants. PRACTICAL IMPLICATIONS: The investigation shows that increasing aircraft cabin humidity by decreasing the ventilation flow rate of fresh outside air would not decrease reports of discomfort made by cabin occupants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号