首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
位于高烈度地震区的支挡结构时刻面临着特大震灾的严峻考验,迄今国内外还没有人针对重力式挡墙系统地做过易损性方面的研究工作。采用增量动力分析方法,考虑地震动输入的不确定性,选取PGA为地震强度参数,挡墙的位移指数D_I为性能参数,基于振动台模型试验划分了挡墙的抗震性能水准,利用FLAC~(3D)对8m高的重力式挡墙进行了地震动力响应分析和地震易损性分析,通过易损性曲线对挡墙在不同地震动作用下的易损性进行了评估和对比分析。研究表明:PGA与挡墙的位移指数近似呈指数关系,当地震动加速度小于0.4g时,场地条件对墙体位移指数的影响不显著,当地震动加速度大于0.4g时,土质场地挡墙位移指数与岩石场地挡墙相比显著增大,墙体位移指数受场地条件的影响显著。当PGA0.4g时,挡墙基本保持完好或以轻微损伤破坏为主;当PGA0.6g时,挡墙已完全损伤,发生严重损坏的概率也较大;当PGA0.8g时,会造成挡墙的严重损坏,甚至可能造成整体倒塌,需要采取一定的抗震加固措施。  相似文献   

2.
地震作用下挡土墙位移模式的振动台试验研究   总被引:3,自引:2,他引:1  
 设计并完成2个比尺1∶8的边坡大型振动台模型试验,通过水平向(X向)、竖直向(Z向)和水平竖直双向(XZ双向)3种激振方式,研究汶川波地震作用下重力式挡墙、桩板式挡墙、锚杆格构式框架和预应力锚索格构式框架护坡位移模式及变化特性,并且分析各支挡结构的抗震性能。研究表明:(1) X向或XZ双向激振下,重力式挡墙和桩板式挡墙在激振加速度峰值AXmax≤0.4 g时的永久位移,以及Z向激振下桩板式挡墙和预应力锚索框架护坡的永久位移可忽略不计;(2) X向激振下,当激振加速度峰值AXmax>0.4 g时,重力式挡墙位移模式为向土体方向滑动和绕墙踵向土体方向转动的耦合,且以滑动为主,而桩板式挡墙位移模式为向土体方向滑动。Z向激振下,当激振加速度峰值AZmax>0.267 g时,重力式挡墙位移模式为向土体方向滑动和绕墙踵向土体方向转动的耦合。XZ双向激振下,AXmax>0.4 g和AZmax>0.267 g时,重力式挡墙位移模式为向土体方向滑动与绕墙趾向土体外侧转动的耦合,且以转动为主,而桩板式挡墙位移模式则为离开土体向外侧滑动与绕基础向土体外侧转动的耦合,且以滑动为主;(3) X向和XZ双向激振下,预应力锚索框架和锚杆框架的位移模式相同,都是沿坡体向土体外侧及边坡下端移动。Z向激振下,当激振加速度峰值AZmax>0.267 g时,锚杆格构式框架护坡位移模式为向土体外侧和边坡上端移动逐渐转变为向土体方向和边坡上端移动;(4) X向或Z向激振下,桩板式挡墙抗震性能优于重力式挡墙,而XZ双向激振下,重力式挡墙抗震性能优于桩板式挡墙。无论哪种激振方式,预应力锚索格构式框架护坡抗震性能优于锚杆格构式框架护坡。  相似文献   

3.
依据国内外规范对近场地震动的定义,收集了215条近场地震动,进而对近场地震弹塑性反应谱(加速度谱、位移谱、残余位移谱、强度折减系数谱)进行参数影响研究,得到地震动特性(地震震级、场地土质、PGA)和恢复力模型动力参数(不同恢复力模型、屈服后刚度比、阻尼比、位移延性系数)等因素对近场地震弹塑性反应谱的影响规律。与中远场地震弹塑性反应谱相比较可知:①Ⅰ~Ⅲ类场地近场地震弹塑性加速度谱的下降段较缓,Ⅳ类场地弹塑性加速度谱的敏感区更宽|②Ⅰ~Ⅲ类场地近场地震弹塑性位移谱的谱值相比Ⅳ类场地的谱值更大。在此基础上,建立了与我国桥梁抗震设计规范场地类型相对应的近场地震弹塑性反应谱,可用于近场地震下的桥梁抗震设计,并可为后续的近场地震能力谱法的研究提供近场地震需求谱。  相似文献   

4.
为了分析土工袋挡墙的地震动力响应特征,研制一个叠层剪切模型箱,借此开展土工袋挡墙大型振动台模型试验。结果表明:土工袋挡墙作为一种新型的柔性挡土墙型式,在地震过程中依靠自身变形耗散了大量能量,加速度放大系数随墙高的升高而增大,而随输入地震动峰值加速度的增大而有减小的趋势;土工袋挡墙与墙后填土具有相近的基频与类似的频谱特征,墙体与填土变形基本协调,整个结构的基频随着输入地震动峰值加速度的增大与经受的振动次数增加逐渐减小;土工袋挡墙墙–土间峰值动土压力随着输入地震动峰值加速度的增大呈增大趋势,沿墙高分布近似为"S"型(或称为"双峰型");经受多次振动后土工袋挡墙的累计残余水平位移较小,在0.6 g的输入地震动作用下,最大累计位移仅为墙高的0.29%,表明土工袋挡墙具有良好的抗震性能。  相似文献   

5.
 预测地震作用下重力式挡土结构的位移是基于位移抗震设计方法的关键。基于Newmark滑动理论、超孔隙水压力应力模型和累积损伤原理,建立饱和回填砂土中超孔压比时程计算模型,以及墙体滑动和转动临界加速度时程计算模型。基于所建立的模型,提出用于计算饱和回填砂土重力式挡土结构滑动和转动位移的计算方法。采用该方法,分析土体参数和地震动参数对墙体滑动及转动位移的影响,并对墙体滑动与转动的耦合作用进行研究。结果表明,填土不发生液化的情况下,滑动位移对土体相对密度和墙体与地基土间的摩擦角十分敏感;转动位移对输入地震的震级、水平加速度和竖向加速度、填土的内摩擦角、墙背摩擦角和相对密度均较为敏感。超孔隙水压力对墙体滑动和转动位移的影响不可忽视。在地震作用下墙体与墙后填土破坏土楔体共同运动的假设条件下,墙体滑动与墙体转动相互抑制。  相似文献   

6.
多级拼装悬臂式挡墙是一种可用于高填方工程的新型轻型支挡结构。为确定墙–坡系统的地震动力响应特征,进行几何、重度和时间相似比分别为1∶10,1∶1和1∶3.162的三级拼装悬臂墙支挡边坡的水平振动台模型试验。结果表明:坡体加速度沿墙高呈明显的非线性放大效应;墙后静止土压力和动土压力均呈"三峰型"分布模式,各级墙踵板对其下部墙背土压力存在遮蔽效应,动土压力沿墙高呈显著的多段折线型分布模式;在地震波波峰时刻,墙体位移急剧增大并接近永久位移;地震作用过程中墙–坡系统的变形发展可分为PGA≤0.4 g时的多级墙体微小变形、0.4 g相似文献   

7.
结合我国2010版抗震规范,根据结构极限状态定义结构整体地震需求参数的损伤状态极限限值和性能水平,提出基于性能的有效评估结构抗震性能的易损性分析方法。以一钢框架结构为例,考虑地震动输入的不确定性,基于增量动力分析(IDA)获得结构地震需求参数与地震动强度指标之间的关系,回归最大层间位移角与地震动峰值加速度的对数函数关系式,得到结构的易损性曲线,由此确定结构在不同地震作用下处于不同性能水平下的失效概率。并与传统的破坏标准的地震易损性分析结果进行比较,结果表明:不同破坏标准下易损性分析结果不同;规范的各种破坏状态偏于保守;在大震作用下,结构倒塌风险小。为钢框架结构抗震设计、地震灾害损失评估和未来地震的损失预测提供参考依据。  相似文献   

8.
作为地震动三要素之一,地震动持时对结构地震易损性的影响有待深入研究。为此,选择分别具有长、短持时特性的两组地震动记录作为输入,以按我国现行规范设计的3个不同高度钢筋混凝土框架结构作为研究对象,采用OpenSees软件,对比分析了不同持时特性地震动作用下钢筋混凝土框架结构的地震易损性,并进一步从失效概率、易损性指数和性能裕度比等3个方面讨论了持时对结构抗震性能的影响。分析结果表明:地震动持时特性对结构地震易损性的影响不容忽视;随着地震动强度和结构损伤水平的增加,地震动持时对地震易损性的影响越发显著;相较于短持时地震动,长持时地震动会使易损性中位值下降超过10%;地震动持时越长,其对结构抗震性能的不利影响也越明显;长持时地震动使结构失效概率增加50%以上,同时提高易损性指数,降低性能裕度比。  相似文献   

9.
为了研究土工袋加筋土挡墙在地震作用下的抗震性能,开展了大型的振动台模型试验。结果表明:随着加载的持续进行,挡墙模型的自振频率降低,阻尼比增加;PGA放大系数随输入地震动峰值加速度的增大而减小,墙高对PGA放大系数的影响反倒不大。土工袋加筋土挡墙的峰值动土压力呈现“中间小,两头大”的分布规律,且墙高越高,输入地震动峰值加速度越大,峰值动土压力越大,而不同地震波形的频谱差异对土压力量值和分布的影响较小。通过数值模拟研究了坡度对土工袋加筋土挡墙力学特性的影响,认为土工袋加筋土挡墙墙后侧向土压力和筋材的拉应力随着墙体坡度的增大而增大,当墙体坡度小于1∶0.75时,侧向土压力较小;当墙体坡度大于1∶0.75时,墙后土压力迅速增加,土压力的分布图式类似呈三角形分布。筋材的拉应力沿长度方向呈单峰型分布,各层筋材的拉应力随上覆填土厚度的增加而增大,但增加的幅度逐渐减小。另外,土工袋加筋土挡墙的剪应变增量、活动区范围以及位移均随墙体坡度的增大而增大。  相似文献   

10.
中庭式地下地铁车站属于异形地下结构,独特的结构形式使其地震灾变机制与标准矩形断面地铁车站存在显著差异。建立土-结构相互作用三维有限元数值模型,进行动力弹塑性时程分析,采用基于构件层次的损伤指标,以量化评价处于中庭式地铁车站结构的不同部位构件在不同幅值、不同频谱地震动作用下的地震损伤程度及其发展规律,结果表明不同地震动下结构的损伤演化规律相似,顶板连梁端部为结构抗震最薄弱部位。同一峰值时,Christchurch波输入下结构损伤度相对较大,其原因为该地震动的傅氏主频相对较低。PGA为0.4 g的Christchurch地震动作用使顶板连梁的弯矩与压力内力值超过了顶板连梁截面的弯-压承载力曲线,表明结构构件的抗震设计应充分考虑不同频谱地震动带来的内力响应的放大效应。  相似文献   

11.
 基于大型振动台模型试验,研究条带式刚性面板挡墙在地震波作用下筋带的应变响应特征,并结合土体相对密实度、面板位移以及频谱特征,探究加筋土挡墙的潜在损伤规律。试验结果表明:随着地震波加载幅值增大,筋带主要受力区域从潜在破坏区移至加筋稳定区;对筋带应变分析显示墙内破坏从中部开始,逐渐向下部发展,中下部更易发生破坏;潜在破裂面研究表明挡墙的破裂面形式类似0.3 H(H为墙高)折线形式,但区域大于规范上的破裂面;在0.1 g~0.3 g地震波作用下相对密实度随加载峰值增加而增大,0.4 g以后相对密实度减小,土体发生损伤,与应变规律一致;不同地震波加载前后输入的白噪声傅里叶谱显示,地震波向上传播其频谱由单峰值逐渐发展为双峰值,且0.4 g以后第二峰值频率有逐渐增大趋势。该研究成果可为更加合理地考虑地震区的加筋土挡墙结构的设计提供指导。  相似文献   

12.
为分析比较条带式和包裹式加筋土挡墙的地震动力响应特征,开展了两种加筋土挡墙模型的大型振动台试验.结合震害调查的结果,发现砌块式加筋土挡墙在地震作用下的破坏模式主要表现为局部砌块的松动变形,很少会出现整体垮塌的情况.相比条带式加筋土挡墙,包裹式加筋土挡墙在地震作用下产生的变形量要小.在相同地震量级作用下,包裹式加筋土挡墙相应部位的水平加速度放大系数要小于条带式加筋土挡墙,但峰值动土压力却要比条带式加筋土挡墙大,这是因为包裹式加筋土挡墙面板在地震作用下的变形量小,对土体的约束能力强所致.因此,在抗震设防区,特别是是高地震烈度区进行加筋土挡墙的选型时,包裹式加筋土挡墙应作为一种优选结构.分析认为加筋土挡墙的抗震设计除了要进行整体稳定性的验算外,还应注重墙体变形量的控制,加筋土挡墙在地震作用下的最大变形量应小于允许的变形量.为维持线路的正常使用,加筋土挡墙的变形指数应控制在4%以内.若验算得到的变形量超出允许值,可采取增大墙后填土的压实度和增加拉筋长度,以及加厚墙体和降低墙体坡率等措施.  相似文献   

13.
为了研究塔楼结构及其支护体系的动力稳定性、抗震性能,并分析支护结构对塔楼抗震性能的影响,以西安市某塔楼结构及其排桩挡墙为研究对象,基于ABAQUS软件建立三维仿真模型进行分析。结果表明:在0.2g(g为重力加速度)的El Centro波作用下,支护结构整体侧向位移划分为2个时间段,0 s≤t≤5 s支护结构在初始平衡位置往复振动,5 s<t≤30 s支护结构位移急剧增大,背土侧的水平位移达到10 mm后发生破坏; 动弯矩峰值出现在桩身高度16 m处,地震波幅值为0.1g时最大动弯矩为6 200 kN·m,当地震波幅值变化到0.2g时,最大动弯矩增加了3 900 kN·m,当地震波幅值变化到0.4g时,最大动弯矩增加了9 100 kN·m,随着地震波幅值增加,最大动弯矩增长幅度越来越大,说明地震波幅值对桩身弯矩的影响较大; 支护后的塔楼在8度设防烈度下各层最大水平位移在整体上小于支护前,小震作用下最大水平位移比支护前减小了2.27 mm,中震作用下最大水平位移与支护前基本持平,大震作用下最大水平位移比支护前减小了22.63 mm,支护后的层间位移角也略有减小,说明排桩挡墙有效保障了塔楼的抗震性能。  相似文献   

14.
汶川地震区路堑重力挡墙震害调查   总被引:1,自引:0,他引:1  
中国四川省汶川县2008年5月12日所发生的里氏8.0级强烈地震,具有烈度大、持续时间长的特点,由于发生在山区,地震对山区公路边坡产生了严重的破坏作用,尤其是对路堑边坡的重力式挡墙产生了不同类别的损坏,根据对本次地震极重灾区国道G213都江堰-映秀段路堑边坡重力式挡墙损坏状况的震后全面调查,整理归纳了路堑边坡重力式挡土墙的不同震害特征,主要可以分为墙体开裂、墙体局部破坏、墙体部分节段外倾、墙体部分节段滑移、落石砸坏挡墙这5种破坏类别,统计归纳了墙体震害与墙高、墙体材料、墙体所在位置线路走向与发震断层走向之间的关系等重要因素之间的规律性特征,本文结果可为山区公路工程的抗震设计研究提供基础参考。  相似文献   

15.
利用汶川地震丰富的近场实震资料,分析总结了地震作用下挡墙的变形破坏模式,指出挡墙的变形模式与地基基础关系最为密切。位于岩质地基上的挡墙主要发生倾斜变形,位于土质地基上的挡墙则主要发生推移变形。在此基础上,基于温克勒地基模型,将土体看做是一系列弹簧和理想刚塑性体的组合体,分析得到了不同变形模式下挡墙地震土压力及其合力作用点的计算方法。结果表明:不同变形模式下挡墙的地震土压力分布特征各异,除平移模式外,其余变形模式下挡墙地震土压力随深度都呈非线性分布;位于岩质地基上的挡墙发生变形后地震土压力的合力作用点要比土质地基上的挡墙高。通过开展位于岩质地基和土质地基上挡墙的振动台模型试验,对文中提出的挡墙地震土压力计算方法进行了验证,发现试验结果和理论分析结果较相吻合。  相似文献   

16.
为了研究地震作用下仰斜式挡墙的地震响应,本文利用数值分析软件Plaxis建立二维数值模型,施加汶川卧龙地震波,分析了不同烈度地震作用下仰斜式挡土墙的地震动响应,得出了以下结论:首先,在不同地震烈度作用下,以仰斜式挡土墙底部为基准,挡墙的中部为加速度和加速度反应谱放大性的转折点,即墙底至0.5倍墙高范围内,水平加速度沿墙高逐渐减小,而在0.5倍墙高至墙顶范围内,水平加速度沿墙高逐渐增加;随着地震烈度的增加,墙后填土的傅里叶谱具有低频放大的效应;地震波的能量沿墙高向上逐渐减小.  相似文献   

17.
 路堤震害在破坏性地震中十分普遍,开展路堤震害风险概率评价并提出合理的震害风险管理方法对提高公路抗震能力和区域防灾减灾能力具有重要意义。进行路堤震害等级划分,选取路堤震害损伤参数,建立路堤震害等级与震害损伤参数的对应关系;以连霍高速公路西宝段K1125+470处路堤为例开展基于CPSHA的公路地震危险性评价,基于IDA和PSDA的路堤震害易损性评价以及基于危险性曲线的路堤震害风险概率评价;在明确路堤震害风险可接受度的基础上提出路堤震害风险管理方法,验证挡土墙对提高路堤抗震性能的积极作用。研究结果表明:连霍高速公路西宝段地震危险性评价结果比第四代地震区划图略高,这与目前渭河断陷盆地地震活跃的现实是一致的;PGA(PGA为地震动峰值加速度)达到0.6 g时,路堤超越严重损伤的概率为65.910%,达到0.8 g时,超越严重损伤的概率为99.995%,说明路堤震害易损性较高;路堤未来50 a超越严重损伤的风险概率为36.46%,发生基本完好和轻微损伤的风险概率为28.49%;以路堤未来50 a发生毁坏的风险概率40%为风险可接受度,路堤震害风险管理方法适用于新建路堤的抗震设计和已建路堤的抗震加固;未来50 a有挡土墙路堤超越严重损伤的风险概率比无挡土墙路堤低15.29%,发生基本完好和轻微损伤的风险概率比无挡土墙路堤高15.62%。  相似文献   

18.
格宾加筋土挡墙抗震性能及数值分析   总被引:1,自引:0,他引:1  
基于有限差分程序FLAC3D动力分析模块,建立水平地震作用下格宾加筋土挡墙足尺数值模型,通过抗震模型试验结果验证数值模型的可靠性,分析不同强度地震波作用、不同竖向加筋间距时,格宾加筋土挡墙的水平位移响应、震陷、加速度响应及破坏模式,在此基础上,提出格宾加筋土挡墙抗震设计相关措施与建议。结果表明:在不同峰值加速度作用下,格宾加筋土挡墙没有出现倒塌破坏,在较大的水平位移及沉降发生后仍能继续承载,表现出良好的抗震性能;在地震波频率特性基本不变的情况下增长加速度峰值,墙面加速度放大系数有减小的趋势;格宾加筋土挡墙建造于7度及以下、8度、9度及以上抗震设防区时,格宾网竖向间距分别不宜大于1.0m、0.75m、0.5m;水平地震作用下挡墙潜在破裂面为双线段组合形式;提出格宾加筋土挡墙抗震设计位移控制标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号