首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为探讨低碳氮比污水厂尾水的深度脱氮除磷技术,以自制新型缓释碳源、海绵铁和活性炭作为反硝化生物滤池的复合填料,在不同HRT和进水硝态氮浓度条件下,探究反硝化系统的深度脱氮除磷效果。结果表明,复合填料反硝化系统具有较高的同步脱氮除磷效率。当HRT为3.65 h时,对TN和TP的平均去除率分别可达到85.7%和93.37%,出水COD平均浓度为29.2mg/L;在3个月的连续运行期间未出现明显的填料层堵塞及亚硝态氮和氨氮积累的现象;系统具有稳定p H值的能力,出水p H值无显著升高且趋于中性。该新型缓释碳源耦合海绵铁复合填料作为反硝化滤池的生物载体时,具有脱氮除磷效果好、无需连续投加碳源、出水p H值稳定等特点。  相似文献   

2.
在实验室条件下分别运行以玉米芯/海绵铁复合填料和单纯玉米芯填料的反硝化滤池,分析两类填料的反硝化脱氮效果,考察复合填料对硝态氮的去除率及出水水质。结果表明,复合填料反硝化滤池以生物异养反硝化作用为主,较单纯玉米芯填料反应器表现出更加稳定的反硝化脱氮效果。当进水硝态氮浓度为20 mg/L、停留时间3 h时,复合填料反应器对硝态氮的去除率可以维持在90%以上,出水硝态氮浓度2 mg/L,没有出现亚硝态氮、氨氮的积累和pH值升高现象;3个月的运行期间单位质量玉米芯的脱氮量为0.42 kg/kg,比单纯玉米芯高0.05 kg/kg。因此,玉米芯/海绵铁复合填料作为反硝化滤池的碳源和生物载体具有脱氮效果好、无需连续添加碳源、出水pH值稳定的特点。  相似文献   

3.
反硝化生物滤池用于污水深度脱氮研究   总被引:4,自引:1,他引:3  
以酒仙桥污水厂的二级处理出水为研究对象,采用中试规模的臭氧/活性炭/反硝化生物滤池工艺进行生物脱氮,重点研究了反硝化生物滤池采用连续流自然挂膜法的启动速度和启动效果,以及碳源投量对总氮去除率的影响。结果表明:反硝化生物滤池是实现污水深度处理的有效手段,当外加乙酸钠作碳源并使C/N〉8时,对TN的去除率能达到80%以上;下向流反硝化生物滤池的生物量主要集中在滤池的上半段,对去除TN的贡献率可达65%。  相似文献   

4.
针对低碳氮比的污水厂二级出水,采用以碱处理玉米芯/零价铁/活性炭为复合填料的反硝化滤池去除其中的硝酸盐,并利用陶粒生物滤池去除反硝化滤池出水中残留的TOC等污染物。试验结果表明,碱处理玉米芯碳源能被微生物有效利用,并可获得较高的脱氮率,在反硝化滤池进水NO-3-N为20~30 mg/L、HRT为7.7 h、温度为28℃左右时,对TN的去除率可达到95%以上,出水TOC在18 mg/L左右;陶粒滤池能有效截留反硝化滤池出水中的悬浮物,控制出水TOC在5 mg/L以下。生物反硝化滤池与陶粒滤池组合系统能较好地去除二级出水中的硝酸盐并且能控制最终的出水水质,不会导致二次污染。  相似文献   

5.
采用反硝化滤池处理城市污水厂尾水,重点考察了水力负荷对其脱氮效能的影响。结果表明:水力负荷对反硝化滤池去除TN影响显著。在C/N值为6.0、水力负荷为3 m3/(m2·h)时,系统出水NH_4~+-N、TN分别为1.66、1.82 mg/L,对其去除率分别为53.43%、91.08%,出水水质可达到《地表水环境质量标准》(GB 3838—2002)的Ⅴ类标准。滤池对污染物的去除主要集中在填料层0~90 cm的区域,对NH_4~+-N、NO-3-N和TN的去除分担率分别为72.73%、95.23%和83.64%。PCR-DGGE分析表明,反硝化滤池中微生物种群丰度和多样性均随填料高度呈现出先增加后降低的趋势;上层与中间层、底层的微生物种群相似度均为85.2%,中间层与底层的微生物种群相似度为80.5%,即反硝化滤池填料层中微生物种属的差异性较小。  相似文献   

6.
以某城市污水厂初沉池出水为原水,采用中试规模的移动床生物膜反应器/沉淀池/反硝化生物滤池工艺进行生物脱氮,重点考察了反硝化生物滤池的脱氮效果及C/N值对脱氮效率的影响,探讨了反硝化生物滤池再启动后的恢复情况,并构建了反硝化生物滤池脱氮动力学模型。结果表明,在稳定运行期间反硝化生物滤池对TN的去除率为86.4%~96.5%,当2.5C/N值5时,TN去除率与C/N值无相关性,平均去除率为93.3%,最佳C/N值为3.45。反硝化生物滤池经过3 d维护后再启动,运行12 h后即可恢复到滤池维护前的脱氮水平。在该中试条件下,反硝化遵循零级反应动力学,反应速率为174.4 mg/(L·h)。  相似文献   

7.
气水比对高分子填料BAF脱氮效能的影响   总被引:1,自引:1,他引:0  
采用高分子载体作为生物填料,以模拟生活污水为处理对象,对两级曝气生物滤池(BAF)的脱氮效能进行了试验研究,着重考察了气水比对BAF去除COD、NH3-N和TN的影响,并探讨了系统内氮素的转化规律和提高脱氮效能的途径。结果表明,当平均水温为22~32℃、进水流量为4 L/h、进水COD为150 mg/L左右、进水NH3-N为60 mg/L左右、一级BAF的气水比为4∶1、二级BAF的气水比为2∶1时,系统的处理效果最佳,对COD、NH3-N和TN的总平均去除率分别达到84.33%、87.84%和56.06%。系统通过同时短程硝化反硝化实现了低能耗、高效率的脱氮。  相似文献   

8.
以酸洗废水的二级出水为研究对象,考察了反硝化生物滤池的挂膜启动速度,研究了滤池的脱氮效果及其影响因素。结果表明:采用接种挂膜法,以驯化后的反硝化污泥为种泥,反硝化生物滤池13 d后便可稳定运行,此时对NO-3-N的去除率为97.87%,且无NO-2-N的积累;稳定运行期间,当进水p H值为6.5~7.5、温度为24~28℃、C/N值为4.0、HRT为20 min时,对TN、NO-3-N的去除率分别为87.70%和97.49%,出水NO-2-N为0.56 mg/L;分析反硝化生物滤池内不同氮素形态沿程分布发现,TN、NO-3-N浓度随滤层高度的增加而降低,NO-2-N浓度则呈现先上升后下降的趋势,0~600 mm滤层对TN、NO-3-N的去除贡献率最大,分别为97.46%和96.70%,因此确定最佳滤层高度为600 mm。  相似文献   

9.
合肥市某污水处理厂采用A~2/O(厌氧/缺氧/好氧)氧化沟—混凝沉淀—反硝化深床滤池组合工艺处理城市生活污水,要求出水水质优于《城镇污水处理厂污染物排放标准》(GB18918—2002)的一级A标准,其中总磷、总氮、氨氮、COD浓度分别不高于0.3、10、2.0和40 mg/L。重点研究了反硝化深床滤池的深度脱氮效果,并分析了进水溶解氧对反硝化效果及外加碳源消耗量的影响。结果表明,该组合工艺脱氮效果良好,TN去除率达到89.2%,其中前置反硝化去除了68.3%的TN,后置反硝化去除了20.9%的TN。通过适量投加外碳源,反硝化深床滤池可以作为TN达标的保障措施。溶解氧浓度与碳源投加量呈正向关系,和硝态氮去除量呈反向关系。每去除1 kg硝态氮需投加甲醇3.60 kg,其中溶解氧消耗碳源占碳源总投加量的26.2%,建议采取措施消除反硝化深床滤池前段的跌水充氧,预计年节省甲醇费用约36.5万元。  相似文献   

10.
针对纳污河水碳氮比较低的问题,采用芦苇碳源后置反硝化生物滤池(Post-DBF)强化反硝化脱氮,重点考察了进水量(17. 28、28. 80、43. 20 L/d)对系统脱氮效果的影响。当进水量为17. 28 L/d时,后置反硝化滤池对COD、TN和NH4~+-N的去除率分别为78. 81%、78. 23%和70. 21%,出水水质达到了《城市污水再生利用景观环境用水水质》(GB/T 18921—2002)标准。其中,Post-DBF的硝化段可以去除大部分有机物,占系统总去除率的87. 34%。在进水与芦苇碳源有足够长接触时间( 2. 6 h)的情况下,芦苇能够为系统缺氧段提供一定的碳源,使反硝化过程得以稳定进行,弥补了传统低碳氮比污水因碳源不足而产生的脱氮效率低下的缺陷。  相似文献   

11.
乙酸钠碳源强化生物滤池对二沉池出水的脱氮效果   总被引:2,自引:1,他引:1  
对于碳源不足的城市污水厂二沉池出水,通过外加碳源提高对其TN的去除率是一种直接而有效的方法.采用生物滤池(滤速为2 m/h)深度处理二沉池出水,并投加乙酸钠碳源,发现当进水混合液的COD>95.0 mg/L时,对TN的去除率可达到98%;部分外加碳源可被DO消耗,只有当进水混合液COD增至57.7 mg/L时,出水DO降到0.8 m/L左右,反硝化现象才逐渐明显;当碳源投加不足时,会出现亚硝态氮的积累,当进水混合液的COD平均为81.1mg/L时,亚硝态氮积累量高达6 mg/L.  相似文献   

12.
研究了反硝化生物滤池的挂膜启动过程,寻求判断启动完成的快速、简便、合理的方法,为反硝化生物滤池的挂膜提供理论依据。控制水力负荷在0.022 m3/(m2·h)即HRT为14 h,水温为25~27℃,反硝化生物滤池运行14 d后对硝态氮的去除率达到99%,第15天平均进水硝态氮浓度由21.86 mg/L减小到8.05 mg/L,出水浓度基本保持不变,仍稳定在0~1 mg/L,反硝化系统生态结构稳定,表明挂膜成功。当有机碳源充足、NO-3-N浓度0.1 mg/L时,反硝化速率与NO-3-N浓度遵循零级反应动力学规律。反硝化生物滤池中的氨氮主要由微生物同化作用去除,去除率约为28.9%。  相似文献   

13.
采用同比例反硝化深床中试装置,对比单层填料反硝化深床滤池与双层填料反硝化深床滤池的脱氮能力。结果表明,双层填料反硝化深床滤池对水质的要求更低,脱氮量较单层填料反硝化深床滤池更大;最佳反冲洗周期为1 d,超过设定周期连续运行对TN的去除无明显影响;同时,对于该系统应根据填料层的性质设置不同的反冲洗周期,可有效延长滤池的使用周期。  相似文献   

14.
对传统分段进水SBR工艺进行改进,增加球形悬浮填料和搅拌措施,并建立中试系统,考察系统对高浓度氨氮废水的处理效果以及温度对脱氮效果的影响。结果表明:该工艺对高浓度氨氮废水的处理效果良好,在进水COD为580~970 mg/L、NH_4~+-N为90~257 mg/L的条件下,对COD、NH_4~+-N和TN的去除率基本在80%、80%和70%以上。水温对系统处理效果的影响显著,水温与比氨氧化速率和比反硝化速率呈显著的正相关性。分段进水SBR工艺可充分利用原水中的有机物作为反硝化碳源,在节能降耗的前提下,可实现废水的深度脱氮处理。  相似文献   

15.
为了提高单级升流式陶粒曝气生物滤池(UBAF)的脱氮效果,对其进行了局部改造并增加了出水内循环。处理灰水的中试结果表明,出水内循环可以明显强化脱氮效果。最佳内循环比为100%,此时对TN的去除率可达82%,与没有内循环时(54%)相比则去除率提高了28%。填料层沿程的DO呈山谷形分布,谷底位于填料层70cm处,其既是反硝化的拐点,又是反硝化与硝化的分界点。  相似文献   

16.
采用中试规模的缺氧生物滤池对污水厂的二沉池出水进行深度处理,重点考察了不同水力负荷下的脱氮效果。结果表明,缺氧生物滤池对水力负荷有一定的承受能力,当水力负荷≤4.3 m3/(m2.h)时,滤池对TN的去除率可达到90%以上;当水力负荷增至5.4 m3/(m2.h)时,滤池亦能在滤层高度为1.4 m处将TN降至5 mg/L以下,平均去除率为84%。当水力负荷较小时,脱氮过程主要发生在滤层前段,随着水力负荷的增大,滤层利用率逐渐升高。  相似文献   

17.
开发了一种基于分段进水的多级缺氧/好氧曝气生物滤池(SMAOBAF)新工艺,并将其用于处理模拟生活污水,考察了进水流量分配比对系统除碳脱氮效能的影响。结果表明,不同进水流量分配比对COD和氨氮的去除影响较小,但对缺氧反硝化及好氧同步硝化反硝化(SND)影响显著。当进水流量分配比为2∶5∶3时,对TN的去除率最高(70. 8%),其中第2段的SND和缺氧反硝化对TN的去除贡献最大。合理分配各段进水量有助于碳源和溶解氧的有效利用,充分发挥硝化/反硝化的最佳效能。  相似文献   

18.
以某市城镇污水处理厂NO_3~--N浓度较高的生化出水为研究对象,采用反硝化生物滤池+曝气生物滤池(DN/CN)工艺,研究了碳氮比(C/N值)、进水负荷、温度等对TN去除效果的影响。结果表明,当增加的C/N值为3. 6、水力负荷≤9. 44 m~3/(m~2·h)[NO_3~--N最大负荷为4. 8 kg/(m~3·d)]时,出水TN满足国标要求(≤10 mg/L);去除单位质量TN需3. 7倍COD,碳源不足会导致NO_2~--N积累和碳源单耗升高; 14℃时的TN去除率较19℃时下降了约15%;反硝化过程中pH值增量和TN去除量存在一个对应关系,可用于反硝化滤池处理效果的辅助判断。  相似文献   

19.
深床过滤与同步生物脱氮的研究   总被引:1,自引:1,他引:1  
研究了深床过滤工艺对城市污水二级处理出水的处理效果及影响因素.将两个上流式滤柱串联,其中填充以φ3~4 mm的聚苯乙烯发泡粒子,床层高度为2 m.在第一个滤柱底部曝气以集成生物硝化,在第二个滤柱的进水中投加甲醇以集成生物反硝化.研究表明,在水力停留时间为1~2 h时,硝化滤柱的氨氮脱除率达到90%,反硝化滤柱的硝酸盐氮脱除率达到95%以上,最终出水的浊度<1 NTU,总的脱氮负荷可达1 kg/(m3填料·d).通过试验发现HRT、进水氨氮和外碳源对生物硝化和反硝化有重要影响.过滤介质能很好地吸附微生物而形成生物膜,在扫描电镜下观察到生物膜具有复杂的网状结构及生物相.另外,反冲洗质量对保证系统稳定运行及脱氮除浊效果有重要影响.  相似文献   

20.
基于碳源需求的A~2/O工艺分段进水研究   总被引:2,自引:2,他引:0  
针对现有A2/O工艺难以稳定实现同步生物脱氮除磷的问题,根据反硝化脱氮和厌氧释磷对碳源的不同需求,采用分段进水的方法,以期提高其脱氮除磷效果。外加乙酸碳源的试验结果表明,在厌氧段投加碳源不能有效提高后续缺氧段的反硝化效果。因此根据反硝化脱氮和厌氧释磷对碳源的不同需求,建立了分段进水的分配模型,以提高A2/O工艺的反硝化速率和释磷速率。A2/O工艺中试采用预缺氧段、厌氧段和缺氧段进水比例分别为15%、50%和35%的方法,结果表明,系统平均出水总氮和总磷分别为15.3和0.41 mg/L,稳定达到了GB 18918—2002的一级B排放标准;对总氮和总磷的去除率分别达到了68.5%和93.2%,比厌氧段单点进水分别提高了15.1%和16.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号