首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Personal care products (PCPs) and endocrine disrupting compounds (EDCs) are groups of organic contaminants that have been detected in biosolids around the world. There is a shortage of data on these types on compounds in Australian biosolids, making it difficult to gain an understanding of their potential risks in the environment following land application. In this study, 14 biosolids samples were collected from 13 Australian wastewater treatment plants (WWTPs) to determine concentrations of eight compounds that are PCPs and/or EDCs: 4-t-octylphenol (4tOP), 4-nonylphenol (4NP), triclosan (TCS), bisphenol A (BPA), estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2). Concentration data were evaluated to determine if there were any differences between samples that had undergone anaerobic or aerobic treatment. The concentration data were also compared to other Australian and international data. Only 4tOP, 4NP, TCS, and BPA were detected in all samples and E1 was detected in four of the 14 samples. Their concentrations ranged from 0.05 to 3.08 mg/kg, 0.35 to 513 mg/kg, < 0.01 to 11.2 mg/kg, < 0.01 to 1.47 mg/kg and < 45 to 370 μg/kg, respectively. The samples that were obtained from WWTPs that used predominantly anaerobic treatment showed significantly higher concentrations of the compounds than those obtained from WWTPs that used aerobic treatment. Overall, 4NP, TCS and BPA concentrations in Australian biosolids were lower than global averages (by 42%, 12% and 62%, respectively) and 4tOP concentrations were higher (by 25%), however, of these differences only that for BPA was statistically significant. The European Union limit value for NP in biosolids is 50 mg/kg, which 4 of the 14 samples in this study exceeded.  相似文献   

2.
The occurrence of five endocrine-disrupting compounds (EDCs), namely 4-n-nonylphenol (4-n-NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), triclosan (TCS) and bisphenol A (BPA), was assessed in the raw, treated wastewater and sewage sludge of eight sewage treatment plants (STPs) in Greece. The analytes were extracted by solid-phase extraction (dissolved phase) or sonication (solid phase). Qualitative and quantitative analyses were performed by gas chromatography-mass spectrometry (GC-MS). The average concentrations in the raw and treated wastewater ranged from 0.23 (4-n-NP) to 5.76microgL(-1) (NP1EO) and from 0.15 (BPA) to 1.84microgL(-1) (NP2EO), respectively. A great part of the detected EDCs was sorbed on suspended solids. In sewage sludge, the average concentrations ranged between 0.17 (4-n-NP) and 12.3microgg(-1)dw (NP1EO). Analysis of daily mass flows in STP of Athens showed that, with the exception of 4-n-NP, all other EDCs were significantly removed (>85%) during wastewater treatment. Regarding the fate of these compounds, a significant part ranging from 45% (for TCS) to more than 70% (for NP1EO, NP2EO and BPA) was transformed by abiotic or biotic mechanisms, while the rest was accumulated in sewage sludge or disposed to the environment via the effluents. Calculation of risk quotients showed the existence of possible threat due to the presence of certain EDCs in treated wastewater and sludge.  相似文献   

3.
北京污水厂进、出水中内分泌干扰物的分布   总被引:4,自引:1,他引:3  
以三种酚类化合物(4-OP、4-n-NP、BPA)、五种雌激素(E1、E2、E3、17α-E2、EE2)为目标物,对其在北京市三个污水处理厂进、出水中的浓度及工艺流程中的分布、迁移进行了研究.结果表明,污水处理厂出水中浓度最高的物质是BPA、EE2,分别为(56~140)、(78~115)ng/L.BPA和天然雌激素(17α-E2除外)主要被生物降解去除,而对EE2的去除主要发生在初级处理过程,去除率约为63%.两种烷基酚在污水处理厂并不能被有效去除.与欧美国家、日本等相比,北京市污水处理厂进、出水中的内分泌干扰物浓度偏高,尤其是出水中的雌激素浓度较高,具有一定的环境风险.  相似文献   

4.
Stir bar sorptive extraction (SBSE) in combination with thermal desorption coupled to gas chromatography-mass spectrometry (GC-MS) was successfully applied to analyze a range of endocrine disrupting compounds (EDCs) in wastewater, solids and sludge. The targeted EDCs include sex steroid hormones, phthalates, alkylphenols and tamoxifen. Recovery for the EDCs using this analytical technique ranged from 44% to 128%. Limit of detection (LOD) of the compounds was 2.0 ng/L for water samples and 0.02 ng/g for solid samples, whereas the limit of quantitation (LOQ) was 5.0 ng/L for water samples and 0.06 ng/g for solid samples. When this analytical technique was applied to measure EDC concentration in a biological nutrient removal (BNR) wastewater treatment plant located in South East Queensland, Australia, the results showed that there were high amounts of phthalates, alkylphenols and female hormones present in the raw influent wastewater and solids. These concentrations were dramatically reduced after passing through the various treatment zones of the bioreactor (anaerobic, aerobic and anoxic).  相似文献   

5.
Urban watersheds are susceptible to numerous pollutant sources and the identification of source-specific indicators can provide a beneficial tool in the identification and control of input loads, often times needed for a water body to achieve designated beneficial uses. Differentiation of wastewater flows from other urban wet weather flows is needed in order to more adequately address such environmental concerns as water body nutrient impairment and potable source water contamination. Anthropogenic compounds previously suggested as potential wastewater indicators include caffeine, carbamazepine, N,N-diethyl-meta-toluamide (DEET), gemfibrozil, primidone, sulfamethoxazole, and TCEP. This paper compares the suitability of a variety of anthropogenic compounds to sucralose, an artificial sweetener, as wastewater indicators by examining occurrence data for 85 trace organic compounds in samples of wastewater effluents, source waters with known wastewater point source inputs, and sources without known wastewater point source inputs. The findings statistically demonstrate the superior performance of sucralose as a potential indicator of domestic wastewater input in the U.S. While several compounds were detected in all of the wastewater effluent samples, only sucralose was consistently detected in the source waters with known wastewater discharges, absent in the sources without wastewater influence, and consistently present in septic samples. All of the other compounds were prone to either false negatives or false positives in the environment.  相似文献   

6.
Xenobiotic organic compounds (XOCs) in wastewater treatment plant (WWTP) effluents might cause toxic effects in ecosystems. Several investigations have emphasized biodegradation as an important removal mechanism to reduce pollution with XOCs from WWTP effluents. The aim of the study was to design a screening tool to identify and select hazardous model pollutants for the further investigation of biodegradation in WWTPs. The screening tool consists of three criteria: The XOC is present in WWTP effluents, the XOC constitutes an intolerable risk in drinking water or the environment, and the XOC is expected to be biodegradable in WWTPs. The screening tool was tested on bisphenol A (BPA), carbamazepine (CBZ), di(2ethylhexyl)-phthalate (DEHP), 17beta-estradiol (E2), estrone (E1), 17alpha-ethinyloetradiol (EE2), ibuprofen, naproxen, nonylphenol (NP), and octylphenol (OP). BPA, DEHP, E2, E1, EE2, and NP passed all criteria in the screening tool and were selected as model pollutants. OP did not pass the filter and was rejected as model pollutant. CBZ, ibuprofen, and naproxen were not finally evaluated due to insufficient data.  相似文献   

7.
This paper presents a methodology based on multivariate data analysis for identifying input sources of perfluoroalkyl substances (PFASs) detected in 37 wastewater treatment plants (WWTPs) across more than 40 cities in the state of Minnesota (USA). Exploratory analysis of data points has been carried out by unsupervised pattern recognition (cluster analysis), correlation analysis, ANOVA and per capita discharges in an attempt to discriminate sources of PFASs in WWTPs. Robust cluster solutions grouped the database according to the different PFAS profiles in WWTP influent. Significantly elevated levels of perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA) and/or perfluorooctane sulfonate (PFOS) in influent have been found in 18 out of 37 WWTPs (49%). A substantial increase in the concentrations of PFHxA and/or PFOA from influent to effluent was observed in 59% of the WWTPs surveyed, suggestive of high concentration inputs of precursors. The fate of one precursor (8:2 fluorotelomer alcohol) in WWTP was modeled based on fugacity analysis to understand the increasing effluent concentration. Furthermore, population-related emissions cannot wholly explain the occurrence and levels of PFASs in WWTPs. Unusually high influent levels of PFASs were observed in WWTPs located in specific industrial areas or where known contamination had taken place. Despite the restriction on the production/use of PFOA and PFOS, this paper demonstrates that wastewater from industrial activities is still a principal determinant of PFAS pollution in urban watersheds.  相似文献   

8.
In Norway the combined hydraulic capacity of all domestic wastewater treatment plants is relatively equally distributed between three major treatment plant types; mechanical, chemical, and combined chemical and biological. The Western coast from Lindesnes in the south to the Russian boarder in the North is dominated by mechanical treatment plants, constituting approximately 68% of the treatment capacity in that area. In the present study we report concentrations and removal efficiencies of polycyclic aromatic hydrocarbons (PAHs), nonylphenols, phthalates, polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) found in five Norwegian wastewater treatment plants (WWTPs) applying different levels of treatment. Concentrations of organic micropollutants in the influents to the WWTPs were generally in the low range of what have been reported by others for domestic wastewater in Europe and North-America. More than 90% removal could be obtained for nonylphenols, PBDEs, and the more hydrophobic 4-6 ring PAHs by chemical precipitation, however, biological treatment appeared to be necessary for efficient removal of the less lipophilic 2 and 3 ring PAHs, the medium- to short-chained nonylphenol ethoxylates and diethyl phthalate. SigmaPCB(7) was removed by more than 90% by combined biological/chemical treatment, while removal efficiency by chemical treatment was not possible to estimate due to low inlet concentrations. Low or insignificant removals of PAHs, phthalates and nonylphenols with their ethoxylates were observed at the mechanical WWTP, which was in accordance with the minuscule removal of TOC.  相似文献   

9.
In vitro bioassays are widely used to detect and quantify endocrine disrupting chemicals (EDCs) in the influents and effluents of municipal wastewater treatment plants (WWTP). These assays have sometimes led to false positive or negative results, partly due to the low EDC concentrations in the samples. The objectives of the present study were: (a) to compare the estrogen screen (E-Screen) and the yeast estrogen screen (YES) bioassays using the 17beta-estradiol (E2) or its equivalence and (b) to investigate if a combination of the E-Screen and YES assays can be used to improve the accuracy of EDC detection and quantification. The E-Screen bioassay was conducted with the MCF-7 (BOS) human breast cancer cell line while the YES bioassay employed two different types of recombinant yeast. The influent and effluent samples collected from the five WWTPs operated by the Greater Vancouver Regional District (GVRD) were analyzed by both the E-Screen and the YES bioassays. Since the results of the E-Screen and YES bioassays varied by up to 4-fold on the same split sample of a nominal E2 concentration, the mean value of the E-screen and YES bioassays was used to represent the EDC activity of a given WWTP sample. Results of these studies showed that the E2 equivalent concentration in each WWTP sample was consistently higher than 1 ng/L, a concentration that may potentially cause endocrine disruption in different aquatic species. The composition of selected EDCs in a subset of effluent samples was examined using a gas chromatograph-high resolution mass spectrometer (GC-HRMS). EDC composition in 10 WWTP samples correlated with the mean endocrine disrupting activities of the E-Screen and YES bioassays. Results also indicated that secondary treatment plants are comparable to the primary treatment plants in removing EDCs from the final effluents.  相似文献   

10.
The performance of an alternately operated activated sludge wastewater treatment plant (WWTP) has been investigated with respect to six phthalates, nonylphenol (NP) and nonylphenol diethoxylate (NPDE) and linear alkylbenzene sulphonates (LAS). Samples of raw sewage, primary and secondary sludge and treated water were collected during an 8-day period in May 1999 and analysed for dissolved and sorbed substances. To evaluate the system performance with respect to substance removal through biodegradation and sorption to sludge the measured data were applied in a model describing the different bioreactors as one single reactor, corresponding to the concepts of, e.g. SimpleTreat. The most abundant of the investigated phthalates was di-(2-ethylhexyl)-phthalate (DEHP) with a measured mean inlet flow of 240g/day. Two percent of this amount was found in the treated water, 70% was biodegraded and 28% was found in the sludge. For LAS the mean inlet flow was 20,300g/day, of which less than 1% was found in the treated water, 84% was biodegraded and 15% was found in the sludge. The mean inlet flow of NP and NPDE was 44 and 590g/day, of which 4% and 2% was found in the treated water, 80% was biodegraded for both substances, and 16% and 18% was found in the sludge, respectively. The WWTP removal of the investigated substances was thus high compared to other studies of conventional activated sludge WWTPs. The simple model set-up presents a strong tool for predicting substance removal and system sensitivity related to changes in the inlet conditions, such as concentrations and flow. Furthermore, it allows the inclusion of complex alternately operated WWTPs in risk assessment tools such as e.g. SimpleTreat.  相似文献   

11.
Yang B  Ying GG  Zhao JL  Liu S  Zhou LJ  Chen F 《Water research》2012,46(7):2194-2204
We investigated the removal efficiencies of 68 selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) spiked in a wastewater matrix by ferrate (Fe(VI)) and further evaluated the degradation of these micropollutants present in secondary effluents of two wastewater treatment plants (WWTPs) by applying Fe(VI) treatment technology. Fe(VI)treatment resulted in selective oxidation of electron-rich organic moieties of these target compounds, such as phenol, olefin, amine and aniline moieties. But Fe(VI) failed to react with triclocarban, 3 androgens, 7 acidic pharmaceuticals, 2 neutral pharmaceuticals and erythromycin-H2O.Thirty-one target EDCs and PPCPs were detected in the effluents of the two WWTPs with concentrations ranging from 0.2 ± 0.1 ng L−1 to 1156 ± 182 ng L−1.Fe(VI) treatment resulted in further elimination of the detected EDCs and PPCPs during Fe(VI) treatment of the secondary wastewater effluents. The results from this study clearly demonstrated the effectiveness of Fe(VI) treatment as a tertiary treatment technology for a broad spectrum of micropollutants in wastewater.  相似文献   

12.
Ying GG  Kookana RS  Dillon P 《Water research》2003,37(15):3785-3791
Sorption and degradation of the five selected endocrine disrupting chemicals (EDCs) including bisphenol A (BPA), 17 beta-estradiol (E2), 17 alpha-ethynylestradiol (EE2), 4-tert-octylphenol (4-t-OP) and 4-n-nonylphenol (4-n-NP) have been investigated in the laboratory using sediment and groundwater from an aquifer in Bolivar, South Australia. The sorption coefficients measured on the sediment were in the following order: 4-n-NP>4-t-OP>EE2>E2>BPA. The sorption coefficients (Kf values) for the five EDCs were 3.89, 21.8, 24.2, 90.9 and 195, respectively. The alkylphenols 4-t-OP and 4-n-NP had strong binding on the sediment while BPA had a weak affinity. Degradation experiments of the five EDCs showed that E2 and 4-n-NP degraded quickly under aerobic conditions with a half-life of 2 and 7 days, respectively. EE2 degraded slowly with an estimated half-life of 81 days in the aquifer material under aerobic conditions while the other two chemicals (BPA and 4-t-OP) remained almost unchanged. Little or no degradation of the five EDCs except slow degradation for E2 was observed within 70 days under anaerobic conditions in native groundwater.  相似文献   

13.
Concentrations of endocrine disrupting compounds (EDCs) of two classes, the alkyl phenols (nonyl phenol (NP) and octyl phenol (OP)) and phthalates, in the milk of ewes grazed on pastures fertilised with sewage sludge or with inorganic fertiliser were determined at three stages of lactation. Milk concentrations of these compounds varied greatly between individuals and stages of lactation for both nonyl phenol (NP; < 30-> 1000 microg/kg DM) and total phthalates (< 200-> 20,000 microg/kg DM). Overall, there was no significant effect of sludge treatment on milk concentrations of chemicals of either class. Significant differences between years were recorded in mean log concentrations of both NP (P < 0.001) and total phthalate (P < 0.001) but there were no consistent changes with stage of lactation, ewe body condition or age in mean milk concentrations of either class of compound. Milk concentrations of NP were low, and little higher than environmental concentrations, while phthalate concentrations were approximately two-fold higher than environmental concentrations. Estimated daily intakes of phthalates were considered to be of potential, biological significance with respect to the health of animal and human consumers. It is concluded that the importance of milk as a route of EDC exposure in growing ruminants differs with class of compound and individual animal. Exposure of the offspring to these EDCs may be transiently exacerbated by exposure of their dams to additional EDCs via the application of sewage sludge to their pasture.  相似文献   

14.
Three dated sedimentary cores were collected for the investigation of temporal trends and the environmental loadings of nonylphenol (NP) and bisphenol A (BPA) in recent decades in the Pearl River Estuary (PRE), South China and the adjacent South China Sea (SCS). The peak fluxes of NP and BPA occurred in the mid-1980s in the PRE, coincident with the rapid economic growth in China. The decline of NP and BPA fluxes is attributable to the implementation of sewage treatment in the late 1980s in the Pearl River Delta (PRD). Multi-model distributions were observed for the fluxes of NP and BPA in the SCS with the peak fluxes occurring in the late 1950s and the mid-1970s respectively. The fluxes of NP and BPA have increased since the 1990s due to the lack of adequate wastewater treatment facilities and the constant economic growth. Nonylphenol was quantifiably detected in sediments predating its widespread application (1940s), suggesting the downward penetration of NP in the sediment columns. The characterization results revealed that NP and BPA were preserved well and the isomer-selective degradation of NP did not occur significantly in the sediment cores. The environmental loadings of NP and BPA in the PRE sediments were roughly estimated to be 124 t and 1.7 t respectively over the past 30 years.  相似文献   

15.
The variation and fate of four endocrine‐disrupting compounds (EDCs) composed of 4‐n‐nonylphenol (4‐n‐NP), bisphenol A (BPA), 17β‐estradiol (E2) and 17α‐ethinylestradiol (EE2) were investigated along treatment units in a sewage treatment plant (STP), China with anaerobic, anoxic and aerobic activated sludge processes. The mean concentrations were 64.8 ng/L (E2), 115.3 ng/L (4‐n‐NP), 171.5 ng/L (EE2), and 920.7 ng/L (BPA) in the influents, and 22.8 ng/L (E2), 50.9 ng/L (4‐n‐NP), 49.9 ng/L (EE2), and 84.3 ng/L (BPA) in the effluents. The biological treatment was more effective in removing NP, BPA and E2 from the aqueous phase than the primary treatment, while the latter could effectively remove EE2. Their possible removal mechanisms during the biological treatment with activated sludge were further explored through spiked batch experiments under three oxygen‐supplying conditions (anaerobic, anoxic and aerobic). The batch experiments showed that 4‐n‐NP, E2 and BPA were removed from the aqueous phase through biodegradation. The combination of sludge sorption and biodegradation accounted for the removal of EE2. Anoxic activated sludge showed the most rapid degradation of 4‐n‐NP, while E2 could be removed most effectively by aerobic activated sludge, and sludge sorption had a remarkable effect on its removal within the initial 15 min of the experiments under three oxygen‐supplying conditions.  相似文献   

16.
Recent studies have shown that the wastewater treatment plant (WWTP) is a significant source of perfluoroalkyl compounds (PFCs) in natural water. In this study, 10 PFCs were analyzed in influent and effluent wastewater and sludge samples in 15 municipal, 4 livestock and 3 industrial WWTPs in Korea. The observed distribution pattern of PFCs differed between the wastewater and sludge samples. Perfluorooctane sulfonate (PFOS) was dominant in the sludge samples with a concentration ranging from 3.3 to 54.1 ng/g, whereas perfluorooctanoic acid (PFOA) was dominant in wastewater and ranged from 2.3 to 615 ng/L and 3.4 to 591 ng/L in influent and effluent wastewater, respectively. Principal component analysis (PCA) results provided an explanation for this variation in PFC distribution patterns in the aqueous and sludge samples. The fates of PFCs in the WWTPs were related with the functional groups. The PFOS concentrations tended to decrease after treatment in most WWTPs, whereas PFOA increased. The different fates of PFOA and PFOS in WWTPs were attributed to the higher organic carbon-normalized distribution coefficient of perfluoroalkylsulfonate (PFASs) than that of the carboxylate analog, indicating the preference of PFASs to partition to sludge. Although industrial WWTPs contained high concentration of PFCs, they are not the main source of PFCs in Korean water environment because of their small release amount. WWTPs located in big cities discharged more PFCs, suggesting household sewage is one of the significant sources of PFCs contamination in the environment.  相似文献   

17.
Diarrhea is the main health problem caused by human-related microsporidia, and waterborne transmission is one of the main risk factors for intestinal diseases. Recent studies suggest the involvement of water in the epidemiology of human microsporidiosis. However, studies related to the presence of microsporidia in different types of waters from countries where human microsporidiosis has been described are still scarce. Thirty-eight water samples from 8 drinking water treatment plants (DWTPs), 8 wastewater treatment plants (WWTPs) and 6 recreational river areas (RRAs) from Galicia (NW Spain) have been analyzed. One hundred liters of water from DWTPs and 50 L of water from WWTPs and RRAs were filtered to recover parasites, using the IDEXX Filta-Max® system.Microsporidian spores were identified by Weber’s stain and positive samples were analyzed by PCR, using specific primers for Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon cuniculi, and Encephalitozoon hellem. Microsporidia spores were identified by staining protocols in eight samples (21.0%): 2 from DWTPs, 5 from WWTPs, and 1 from an RRA. In the RRA sample, the microsporidia were identified as E. intestinalis.To the best of our knowledge, this is the first report of human-pathogenic microsporidia in water samples from DWTPs, WWTPs and RRAs in Spain. These observations add further evidence to support that new and appropriate control and regulations for drinking, wastewater, and recreational waters should be established to avoid health risks from this pathogen.  相似文献   

18.
The development and proliferation of antibiotic resistance in pathogenic, commensal, and environmental microorganisms is a major public health concern. The extent to which human activities contribute to the maintenance of environmental reservoirs of antibiotic resistance is poorly understood. In the current study, wastewater treatment plants (WWTPs) were investigated as possible sources of tetracycline resistance via qualitative PCR and quantitative PCR (qPCR). Various WWTPs and two freshwater lakes were surveyed for the presence of an array of 10 tetracycline resistance determinants (tet(R)): tet(A)-(E), tet(G), tet(M), tet(O), tet(Q), tet(S). All WWTP samples contained more different types of tet(R) genes, as compared to the lake water samples. Gene copy numbers of tet(G) and tet(Q) in these samples were quantified via qPCR and normalized to both the volume of original sample and to the amount of DNA extracted per sample (a proxy for bacterial abundance). Concentrations of tet(Q) were found to be highest in wastewater influent while tet(G) concentrations were highest in activated sludge. Investigation of the effects of UV disinfection on wastewater effluent showed no reduction in the number of detectable tet(R) gene types.  相似文献   

19.
Non-ionic surfactants are widely used for household and industrial purposes. For different reasons the metabolites, e.g. 4-nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate and 4-tert-octylphenol, are especially considered to be endocrine disruptive and thus potentially harmful for the environment. In this study, field samples of raw wastewater from different point sources, including industrial effluents, household effluents, the influent and secondary effluent of a wastewater treatment plant that treats this wastewater were monitored simultaneously. Composite samples were taken five times over periods of 1 week at nine sample sites. The results showed that the concentrations and fluxes were varying. In addition industrial, influent and effluent samples were investigated for nonylphenol (NP). The highest concentrations of bismuth active substances (BiAS) were obtained by wastewater samples from a chemical and a cloth washing company ranging from 10,200 to 65,600 microg/l and 14,600 to 33,900 microg/l BiAS, respectively. Although the concentration of BiAS in the wastewater of the paper production was only between 460 and 1200 microg/l BiAS, the NP/BiAS ratio of 0.51% was considerably higher than in other industrial effluents. The BiAS concentration in wastewater samples from households ranged from 2200 to 7900 microg/l BiAS, but the NP concentration was quite low, 0.01% of BiAS. This could be due to the effort within the EU to phase out nonylphenol polyethoxylates in household detergents. Influent concentrations between 700 and 2200 microg/l BiAS with removal rates in the WWTP ranging from 70.7 to 99.4% with an average of 92.2% could be measured.  相似文献   

20.
Occurrence of selected surfactants in untreated and treated sewage   总被引:4,自引:0,他引:4  
Several surfactants were monitored in treated and untreated sewage in nine municipal wastewater treatment plants (WWTPs) in western Austria. The nine sampled WWTPs cover a wide variety referring to size and applied treatment technology. The investigation focused on linear alkylbenzene sulphonate (LAS), quaternary ammonia compounds (QAC), nonylphenol (NP), octylphenol (OP), nonylphenolmono- (NP(1)EO) and -diethoxylates (NP(2)EO). Whereas LAS, NP, OP and NP(1,2)EO were analysed separately in the liquid phase and in the solid phase, the QACs were measured in the total sample. Total influent concentrations of LAS varied between 2.4 mg l(-1) up to 6.7 mg l(-1) whereas total effluent concentrations were in the lower microg l(-1) range (11-50 microg l(-1)). Whichever the type of treatment, a clear removal during treatment was observed. Solid liquid distribution coefficients K(d) were calculated for untreated sewage. The calculated K(d) values varied between 1300 and 3900 l kg(-1). OP was of minor importance with total influent concentrations below 1microg l(-1). NP and NP(1,2)EO were present in all analysed influents in concentrations between 1 and 35microg l(-1). Effluent concentrations were notably lower than the measured influent concentrations. K(d) values for NP varied between 500 and 6600 l kg(-1), for NP(1)EO between 800 and 2700 l kg(-1) and for NP(2)EO between 100 and 1800 l kg(-1). From the QACs several alkyl benzyl (BAC), dialkyl (DDAC) and trialkyl (ATAC) ammonium chlorides with varying alkyl chain lengths were analysed. Highest total concentrations in the influents to the WWTPs were observed for the BAC-C12 and the ATAC-C16 homologues. Effluent concentrations were notably lower compared to influent concentrations, indicating removal by adsorption and/or biodegradation. The influence of the removal by adsorption increased with increasing alkyl chain length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号