首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Implications of sequential use of UV and ozone for drinking water quality   总被引:13,自引:0,他引:13  
The formation of bromate levels exceeding the drinking water standard of 10 microg L-1 may impose the reduction of ozone doses used in the treatment of drinking water. This paper illustrates the procedure of evaluating the use of reduced ozone doses while implementing an additional UV disinfection step for an actual drinking water treatment plant. Ozonation was performed at low ozone doses in bench-scale experiments with a pretreated river water from the Paris area (France). At the low ozone dose of 0.5 mg L-1, bromate formation could be kept below 0.4 microg L-1, while inactivation of vegetative bacteria and UV-resistant viruses was calculated to exceed 5 log units, and a substantial decoloration (31% of the absorption at lambda=254 nm) was achieved. Based on the measured transient ozone and OH radical concentrations, the oxidation of micropollutants was calculated. Fast reacting micropollutants containing phenol, amine or double bond moieties, such as sulfamethoxazole, diclofenac and 17-alpha-ethinylestradiol, were completely oxidized. Slow-reacting synthetic micropollutants, e.g., atrazine, iopromide and methyl tertiary butyl ether (MTBE), were oxidized by only 20%, 20% and 10%, respectively, and the taste and odor compounds 2-methylisoborneol (MIB) and geosmin by 40% and 50%, respectively. The addition of an UV treatment step to the existing treatment train, which should guarantee disinfection of ozone-resistant pathogenic microorganisms, including Cryptosporidium parvum oocysts, has negligible effects on water matrix components but may induce significant transformation of micropollutants. Overall, the combination of ozonation at reduced doses and UV treatment leads to an improved water quality with regard to disinfection, oxidation of micropollutants and minimization of bromate.  相似文献   

2.
The drinking water industry is continually seeking innovative disinfection strategies to control biofouling in transmission systems. This research, conducted in collaboration with the East Bay Municipal Utility District (EBMUD) in California, compared the efficacy of chlorine dioxide (ClO2) to free chlorine (Cl2) with and without pre-treatment with low-pressure ultraviolet (UV) light for biofilm control. An additional goal was to determine disinfection by-product (DBP) formation with each disinfection strategy. Annular reactors (ARs) containing polycarbonate coupons were used to simulate EBMUD's 90-mile aqueduct that transports surface water from a source reservoir to treatment facilities. ARs were dosed with chemical disinfectants to achieve a residual of 0.2 mg/L, which is a typical value mid-way in the aqueduct. The experiment matrix included four strategies of disinfection including UV/ClO2, ClO2, UV/Cl2 and Cl2. Two ARs acted as controls and received raw water (RW) or UV-treated water. The data presented show that the UV/ClO2 combination was most effective against suspended and attached heterotrophic (heterotrophic plate count, HPC) bacteria with 3.93 log and 2.05 log reductions, respectively. ClO2 was more effective than Cl2 at removing suspended HPC bacteria and similarly effective in biofilm bacterial removal. UV light alone was not effective in controlling suspended or biofilm bacteria compared to treatment with ClO2 or Cl2. Pre-treatment with UV was more effective overall for removal of HPC bacteria than treating with corresponding chemical disinfectants only; however, it did not lower required chemical dosages. Therefore, no significant differences were observed in DBP concentrations between ARs pre-treated with UV light and ARs not pre-treated. Disinfection with ClO2 produced fewer total trihalomethanes (TTHMs) and haloacetic acids (HAAs) than chlorination but did produce low levels of chlorite. These data indicate that replacing Cl2 with ClO2 would further control microbiological re-growth and minimize TTHM and HAA formation, but may introduce other DBPs.  相似文献   

3.
Populations of bacteria in biofilms from different sites of a drinking water production system were analysed. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analyses revealed changing DNA band patterns, suggesting a population shift during bank filtration and processing at the waterworks. In addition, common DNA bands that were attributed to ubiquitous bacteria were found. Biofilms even developed directly after UV disinfection (1-2m distance). Their DNA band patterns only partly agreed with those of the biofilms from the downstream distribution system. Opportunistic pathogenic bacteria in biofilms were analysed using PCR and Southern blot hybridisation (SBH). Surface water appeared to have a direct influence on the composition of biofilms in the drinking water distribution system. In spite of preceding filtration and UV disinfection, opportunistic pathogens such as atypical mycobacteria and Legionella spp. were found in biofilms of drinking water, and Pseudomonas aeruginosa was detected sporadically. Enterococci were not found in any biofilm. Bacterial cell counts in the biofilms from surface water to drinking water dropped significantly, and esterase and alanine-aminopeptidase activity decreased. beta-glucosidase activity was not found in the biofilms. Contrary to the results for planktonic bacteria, inhibitory effects were not observed in biofilms. This suggested an increased tolerance of biofilm bacteria against toxic compounds.  相似文献   

4.
Ozonation is a disinfection technique commonly used in the treatment of drinking water. It destroys harmful microbes, but it also degrades organic matter in water, increasing the bioavailability of organic matter. Recently, it was found that not only organic carbon but also phosphorus can limit the microbial growth in drinking water, which contains high amount of organic matter. We used a bioassay to analyze whether ozone could also increase the microbially available phosphorus (MAP) in drinking water, and whether MAP in ozone-treated water was associated with the growth of heterotrophic microbes. We found that both assimilable organic carbon and MAP concentrations were increased by ozone treatment. In ozonated water, microbial growth was mainly limited by phosphorus, and even minor changes in MAP concentration dramatically increased the growth potential of heterotrophic microbes. In this study, ozonation increased the MAP by 0.08-0.73 microgram P/l, resulting in an increase of 80,000-730,000 CFU/ml in water samples. In contrast to MAP, the content of assimilable organic carbon (AOCpotential) did not correlate with microbial growth. The results show that in water treatment not only AOCpotential but also MAP should be considered as an important factor that can limit microbial growth in drinking water.  相似文献   

5.
Ozone has been investigated for its potential to remove marine dinoflagellate algae from ships' ballast water. Dinoflagellate algae, Amphidinium sp. isolated from the Great Barrier Reef, Townsville, Australia were used as indicators since these produce a type of cyst that is difficult to inactivate, but are relatively easy to culture. The ozonation experiments have demonstrated a high ozone demand for inactivation of the algal cultures, which increases as the culture ages. The main ozone demand in seawater is due to its reaction with bromide to form bromine compounds. The non-bromide ozone demand has been estimated by measuring the residuals produced after various doses of ozone. The Amphidinium sp. show an unexpected response to both ozonation and bromination, with an instantaneous inactivation of the organisms for all doses that produced an oxidant residual in the seawater, followed by an effect of the disinfection residual. The standard design procedure of comparing Ct will not be effective for predicting the response of the organism to varying dose, C, and contact time, t, and a plot of ozone produced oxidant residual against organism inactivation for various contact times is proposed for design purposes. High doses of ozone (5-11 mg/L) and up to 6h of residual contact were required for a 4-log inactivation of the Amphidinium sp. Ozonation is likely to be a difficult technology to implement for organisms with this ozone requirement in combination with characteristics of ballast tanks, which contain areas of sediments high in detritus and areas of corrosion.  相似文献   

6.
Little is known about the microbial selectivity of UV treatment for antibiotic resistant bacteria, and the results of limited studies are conflicting. To understand the effect of UV disinfection on antibiotic resistant bacteria, both total heterotrophic bacteria and antibiotic resistant bacteria (including cephalexin-, ciprofloxacin-, erythromycin-, gentamicin-, vancomycin-, sulfadiazine-, rifampicin-, tetracycline- and chloramphenicol-resistant bacteria) were examined in secondary effluent samples from a municipal wastewater treatment plant. Bacteria resistant to both erythromycin and tetracycline were chosen as the representative of multiple-antibiotic-resistant bacteria and their characteristics after UV treatment were also investigated.  相似文献   

7.
Pozos N  Scow K  Wuertz S  Darby J 《Water research》2004,38(13):3083-3091
Two model distribution systems were operated in parallel to investigate the impact of UV disinfection on water distribution system biofilms and microbial community composition. One system received an influent irradiated with UV light, whereas the control received the same influent with no treatment. The biofilm in the UV system, as compared to the control, was more responsive (i.e., had a greater increase in steady-state density of heterotrophic bacteria) to the increased nutrient availability afforded by a decrease in HRT from 12 to 2 h. However, the UV treatment did not have a consistent impact on the biofilm community, indicating the processes controlling HPC density were independent of the specific strains of bacteria forming the biofilm. There was evidence that particle shielding contributed to the survival of UV-susceptible bacteria. This hypothesis was consistent with the presence of UV-susceptible bacteria in the UV system, as well as the high similarity of the biofilm communities in the UV and control systems in one of the experiments. To simulate an intrusion event, opportunistic pathogens were added to each system after the biofilm community reached steady-state. Opportunistic pathogen attachment was not affected by the UV treatment, but was instead correlated to the biofilm density of heterotrophic bacteria.  相似文献   

8.
针对高温、高藻期原水较难处理的特点,采用臭氧/生物活性炭工艺进行了中试研究。试验结果表明,臭氧/生物活性炭工艺对有机物的去除效果明显,对CODMn的平均去除率为73.76%,对UV254的平均去除率为86.38%。高温条件下,大量生长的细菌随出水流出反应器,在投氯量为1 mg/L时可杀灭生物活性炭工艺出水中的大部分细菌,剩余细菌数〈10 CFU/mL,对细菌的杀灭率为99%,能够保证出水的微生物安全性。同时为避免细菌在活性炭表面大量繁殖而堵塞活性炭微孔,应适当缩短反冲洗周期,以3~4 d为宜。臭氧/生物活性炭工艺对藻类的平均去除率为75%,且在其出水中未检测出藻毒素。  相似文献   

9.
Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L−1 Fe2+ and 10 mg L−1 of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3-, the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe3+-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments.  相似文献   

10.
The drinking water industry is closely examining options to maintain disinfection in distribution systems. In particular this research compared the relative efficiency of the chlorite ion (ClO2-) to chlorine dioxide (ClO2) for biofilm control. Chlorite levels were selected for monitoring since they are typically observed in the distribution system as a by-product whenever chlorine dioxide is applied for primary or secondary disinfection. Previous research has reported the chlorite ion to be effective in mitigating nitrification in distribution systems. Annular reactors (ARs) containing polycarbonate and cast iron coupons were used to simulate water quality conditions in a distribution system. Following a 4 week acclimation period, individual ARs operated in parallel were dosed with high (0.25mg/l) and low (0.1mg/l) chlorite concentrations and with high (0.5 mg/l) and low (0.25mg/l) chlorine dioxide concentrations, as measured in the effluent of the AR. Another set of ARs that contained cast iron and polycarbonate coupons served as controls and did not receive any disinfection. The data presented herein show that the presence of chlorite at low concentration levels was not effective at reducing heterotrophic bacteria. Log reductions of attached heterotrophic bacteria for low and high chlorite ranged between 0.20 and 0.34. Chlorine dioxide had greater log reductions for attached heterotrophic bacteria ranging from 0.52 to 1.36 at the higher dose. The greatest log reduction in suspended heterotrophic bacteria was for high dose of ClO2 on either cast iron or polycarbonate coupons (1.77 and 1.55). These data indicate that it would be necessary to maintain a chlorine dioxide residual concentration in distribution systems for control of microbiological regrowth.  相似文献   

11.
B Werschkun  Y Sommer  S Banerji 《Water research》2012,46(16):4884-4901
To reduce the global spread of invasive aquatic species, international regulations will soon require reductions of the number of organisms in ballast water discharged by ships. For this purpose, ballast water treatment systems were developed and approved by an international procedure. These systems rely on established water treatment principles which, to different degrees, have been proven to generate disinfection by-products with hazardous properties but have only scarcely been investigated in marine environments. Our study evaluates the publicly available documentation about approved ballast water treatment systems with regard to by-product formation. The most commonly employed methods are chlorination, ozonation, and ultraviolet (UV) irradiation. Chlorination systems generate trihalomethanes, halogenated acetic acids, and bromate in substantially larger quantities than reported for other areas of application. Levels are highest in brackish water, and brominated species predominate, in particular bromoform and dibromoacetic acid. Ozonation, which is less frequently utilized, produces bromoform in lower concentrations but forms higher levels of bromate, both of which were effectively reduced by active carbon treatment. In systems based on UV radiation, medium pressure lamps are employed as well as UV-induced advanced oxidation. For all UV systems, by-product formation is reported only occasionally. The most notable observations were small increases in nitrite, hydrogen peroxide, halogenated methanes and acetic acids. The assessment of by-product formation during ballast water treatment is limited by the lacking completeness and quality of available information. This concerns the extent and statistical characterisation of chemical analysis as well as the documentation of the test water parameters.  相似文献   

12.
We have investigated the efficiency of disinfection and destruction of organic impurities of model and natural waters separately and together by ozone and UV radiation in the flow-through mode on a laboratory unit with the capacity 0.02 m3/h. We agreed on the parameters of ozonization and O3/UV treatment of the Dnieper water in the flow-through mode making for the degree of its decontamination and discoloration corresponding to the standards for drinking water. It has been shown that the use of O3/UV treatment raises the degree of disinfection and purification of the Dnieper water from organic impurities compared with ozonization or UV radiation.  相似文献   

13.
Chin A  Bérubé PR 《Water research》2005,39(10):2136-2144
The efficacy of using ozone (O3), ultraviolet irradiation (UV) and the combined O3-UV advanced oxidation process (AOP) to remove 2 classes of disinfection by-product (DBP) precursors from raw surface water samples have been evaluated and compared. In particular, trihalomethane and haloacetic acids formation potentials were measured. Laboratory batch scale experiments were carried out as a function of ozone and UV dosage in order to study the removal kinetics. It is concluded that the combined O3-UV AOP is more effective than either the ozone or UV treatment alone. Ozone-UV AOP is capable of mineralizing up to 50% of the total organic carbon from the raw source water at an ozone dose of 0.62+/-0.019 mg O3/mL and a UV dose of 1.61 W s/cm2. In addition, O3-UV AOP can reduce trihalomethane formation potential by roughly 80% and haloacetic acids formation potential by roughly 70% at the same ozone and UV dosage.  相似文献   

14.
为考察常用城市污水再生回用工艺去除病毒的效果,采用柯萨奇B3型病毒(CoxB3)作为肠道病毒示踪剂进行试验.首先向污水厂二级处理出水中人工投加已知浓度的病毒,然后分别采用混凝/沉淀/过滤、超滤、氯消毒和臭氧消毒对其进行处理,并分析处理前后病毒的组织培养半数感染剂量(TCID50).结果表明,混凝/沉淀/过滤对大肠菌的去除率为2-lg~3-lg,对柯萨奇病毒的去除率约为1.83-lg;氯消毒和臭氧消毒可以有效杀灭大肠菌,在消毒剂浓度为1~10mg/L、余氯浓度为1~6 mg/L、pH为6~7的条件下,氯消毒对柯萨奇病毒的去除效果不佳,臭氧消毒对柯萨奇病毒的去除率则随臭氧浓度的不同而在1.33-lg~3.83-lg变化;超滤可有效去除大肠菌,对柯萨奇病毒的去除率为2.33-lg.  相似文献   

15.
We have discussed some features of the process of disinfection of water by UV radiation and ozone that substantially affect the final result. In an experimental way we investigated the relationship between the degree of water disinfection and the rate of its stirring. It has been shown that fast bulk stirring leads to opposite results for closed and direct-flow conditions and that for the last condition this is unacceptable. We have conducted design modeling of disinfection processes and comparison of design and experimental data. For treating water with UV radiation tube lamps, we have proposed a “two-dimensional” model of stirring which demonstrated maximum effective use of their lighting capabilities in the reactor’s direct-flow mode.  相似文献   

16.
Yonkyu Choi 《Water research》2010,44(1):115-122
UV treatment is a cost-effective disinfection process for drinking water, but concerned to have negative effects on water quality in distribution system by changed DOM structure. In the study, the authors evaluated the effects of UV disinfection on the water quality in the distribution system by investigating structure of DOM, concentration of AOC, chlorine demand and DBP formation before and after UV disinfection process. Although UV treatment did not affect concentration of AOC and characteristics of DOM (e.g., DOC, UV254, SUVA254, the ratio of hydrophilic/hydrophobic fractions, and distribution of molecular weight) significantly, the increase of low molecular fraction was observed after UV treatment, in dry season. Chlorine demand and THMFP are also increased with chlorination of UV treated water. This implies that UV irradiation can cleave DOM, but molecular weights of broken DOM are not low enough to be used directly by microorganisms in distribution system. Nonetheless, modification of DOM structure can affect water quality of distribution system as it can increase chlorine demands and DBPs formation by post-chlorination.  相似文献   

17.
热水供应系统中嗜肺军团菌的控制   总被引:2,自引:0,他引:2  
介绍了军团病的症状与感染途径,总结了嗜肺军团菌在建筑物热水供应系统、游泳池等的污染现状,阐述了过热水冲洗、高含氯水清洗等管道消毒方法和铜 -银电离、UV、氯胺、臭氧等供水消毒方法的操作要点,并比较了上述方法的优缺点。  相似文献   

18.
Gilboa Y  Friedler E 《Water research》2008,42(4-5):1043-1050
The microbial quality of raw greywater was found to be much better than that of municipal wastewater, with 1.6 x 10(7)cfu ml(-1) heterotrophic plate count (HPC), and 3.8 x 10(4), 9.9 x 10(3), 3.3 x 10(3) and 4.6 x 10(0)cfu 100 ml(-1) faecal coliforms (FC), Staphylococcus aureus sp., Pseudomonas aeruginosa sp. and Clostridium perfringes sp., respectively. Further, three viral indicators monitored (somatic phage, host: Escherichia coli CN(13) and F-RNA phages, hosts: E. coli F+(amp), E. coli K12) were not present in raw greywater. The greywater was treated by an RBC followed by sedimentation. The treatment removed two orders of magnitude of all bacteria. UV disinfection kinetics, survival and regrowth of HPC, FC, P. aeruginosa sp. and S. aureus sp. were examined. At doses up to 69 mW s cm(-2) FC were found to be the most resistant bacteria, followed by HPC, P. aeruginosa sp. and S. aureus sp. (inactivation rate coefficients: 0.0687, 0.113, 0.129 and 0.201 cm2 mW(-1)s(-1), respectively). At higher doses (69-439 mW s cm(-2)) all but HPC (which exhibited a tailing curve) were completely eliminated. Microscopic examination showed that FC self-aggregate in the greywater effluent. This provides FC an advantage at low doses, since the concentration of suspended matter (that can provide shelter from UV radiation) in the effluent was very low. FC, P. aeruginosa sp. and S. aureus sp. did not exhibit regrowth up to 6h after exposure to increasing UV doses (19-439 mW s cm(-2)). HPC regrowth was proven to be statistically significant in un-disinfected effluent and after irradiation with high UV doses (147 and 439 mW s cm(-2)). At these doses regrowth resulted from growth of UV-resistant bacteria due to decreased competition with other bacteria eliminated by the irradiation.  相似文献   

19.
Chlorine and ozone were compared in pilot plants (capacity about 3.2 m3 h−1), which were fed with the same activated sludge treated and filtered water. Together with physico-chemical analysis the water was analysed for different types of microorganisms, including vegetative bacteria (total and thermotolerant coliforms, faecal streptococci and Pseudomonas aeruginosa), bacterial spores (spores of aerobic bacteria at 37°C and sulphite reducing clostridia) and bacterial viruses (somatic coliphages and F-specific bacteriophages).The average chlorine and ozone dose were, respectively, 3.65 and 15.3 mg l−1 of water, while after a contact time for both of about 25 min the average residual concentrations were 1.79 and 0.35 mg l−1 of water. These residuals were measured with the DPD-method. The ammonia-N concentration varied greatly (0.06–72.0 mg l−1) and was used to group the data into four classes: (1) non-nitrified water, defined as water in which nitrate-N was smaller than ammonia-N; (2) moderately nitrified water, in which nitrate-N was larger than ammonia-N and the ammonia-N was higher than 2 mg l−1; (3) well nitrified water, defined as water in which ammonia-N was lower than 2 mg l−1; (4) very well nitrified water, in which ammonia-N was smaller than 0.5 mg l−1.This classification indicated that the concentrations of most other impurities decreased with a better nitrification. Statistical analysis of the data showed also that ozone was a better disinfectant than chlorine in the case where the disinfection is based upon their residual content. The degree of nitrification had a greater effect on chlorine disinfection than on ozone disinfection.During chlorination the total residual chlorine decreased, with better nitrification; the chlorine demand increased; the composition of the residual chlorine changed very much and the inactivation of bacterial viruses improved. The vegetative bacteria showed a varying pattern; most were inactivated in moderately nitrified water, when the dichloramine concentration was highest and false positive FAC concentration was lowest of the four classes. Reduction of bacterial spores was not observed.During ozonization other effects were indicated. Reductions of most organims increased slightly with better nitrification; only reductions of F-specific bacteriophages decreased. There was also a small decrease of bacterial spores. The treated effluent had a high ozone consumption and the inactivation of the organisms was low in relation to ozone dose and residual ozone.The bromide concentration (0.3–2.9 mg l−1) effected the chemistry of chlorine and ozone and had a positive effect on chlorine and ozone disinfection of total coliforms.For most types of micoorganisms the disinfection coefficients of the Selleck model and the germicidal efficiencies could be determined.  相似文献   

20.
Wang X  Hu X  Wang H  Hu C 《Water research》2012,46(4):1225-1232
The effectiveness of UV and chlorination, used individually and sequentially, was investigated in killing pathogenic microorganisms and inhibiting the formation of disinfection by-products in two different municipal wastewaters for the source water of reclaimed water, which were from a microfilter (W1) and membrane bioreactor (W2) respectively. Heterotrophic plate count (HPC), total bacteria count (TBC), and total coliform (TC) were selected to evaluate the efficiency of different disinfection processes. UV inactivation of the three bacteria followed first-order kinetics in W1 wastewater, but in W2 wastewater, the UV dose-response curve trailed beyond approximately 10 mJ/cm2 UV. The higher number of particles in the W2 might have protected the bacteria against UV damage, as UV light alone was not effective in killing HPC in W2 wastewater with higher turbidity. However, chlorine was more effective in W2 than in W1 for the three bacteria inactivation owing to the greater formation of inorganic and organic chloramines in W1 wastewater. Complete inactivation of HPC in W1 wastewater required a chlorine dose higher than 5.5 mg/L, whereas 4.5 mg/L chlorine gave the equivalent result in W2 wastewater. In contrast, sequential UV and chlorine treatment produced a synergistic effect in both wastewater systems and was the most effective option for complete removal of all three bacteria. UV disinfection lowered the required chlorine dose in W1, but not in W2, because of the higher chlorine consumption in W2 wastewater. However, UV irradiation decreased total trihalomethane formation during chlorination in both wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号