首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Flow boiling flow patterns in four circular tubes with internal diameters of 1.10, 2.01, 2.88 and 4.26 mm were investigated in the present project. The experiments were conducted in vertical upward two-phase flow using R134a as the working fluid. The observed flow patterns include dispersed bubble, bubbly, confined bubble, slug, churn, annular and mist flow. The flow characteristics in the 2.88 and 4.26 mm tubes are similar to those typically described in normal size tubes. The smaller diameter tubes, 1.10 and 2.01 mm, exhibit strong “small tube characteristics” as described in earlier studies. The sketched flow maps show that the transition boundaries of slug-churn and churn-annular depend strongly on diameter. On the contrary, the dispersed bubble to churn and bubbly to slug boundaries are less affected. The transition boundaries are compared with existing models for normal size tubes showing poor agreement.  相似文献   

2.
An experiment has been carried out to study the phase split of water–nitrogen two-phase flow through a horizontal T-junction with a square cross section (500 μm × 500 μm), focusing on the effect of flow pattern. By comparing the results of slug, slug–annular and annular flows, it is shown that phase split characteristic of micro-T-junction highly depends on inlet flow pattern. When the inlet flow is a slug flow, it takes on gas rich in side branch. But when the inlet flow shifts to an annular flow, the side branch is rich in liquid. For an slug–annular flow, the curves show transitional characteristics. The effect of superficial velocities on the phase split of each flow pattern is considered as following: the liquid taken off decreases with an increase of liquid superficial velocity and increases with an increase of gas superficial velocity.The results have been compared to that of a 500 μm T-junction with a circular cross section. It is found that the square T-junction shows more liquid taken off at slug flow and slug–annular flow. While, at annular flow, the liquid taken off increases slower at high gas taken off in square T-junction due to cross section effect.  相似文献   

3.
The present study explores experimentally the two-phase flow instability in a microchannel heat sink with 15 parallel microchannels. The hydraulic diameter for each channel is 86.3 μm. Flow boiling in the present microchannel heat sink demonstrates significantly different two-phase flow patterns under stable or unstable conditions. For the stable cases bubble nucleation, slug flow and slug or annular flows appear sequentially in the flow direction. On the other hand, forward or reversed slug/annular flows appear alternatively in every channel. Moreover, the length of bubble slug may oscillate for unstable cases with reversed flow demonstrating the suppressing effect of pressure field for bubble growth. It is found that the magnitude of pressure drop oscillations may be used as an index for the appearance of reversed flow. A stability map on the plane of inlet subcooling number versus phase change number is established. A very narrow region for stable two-phase flow or mild two-phase flow oscillations is present near the line of zero exit quality.  相似文献   

4.
To learn how to utilize the exhaust heat from a high-temperature gas product of a methanol reformer, the present study experimentally investigates the boiling two-phase flow in co- and counter-current microchannel heat exchangers (MCHE) with gas heating. Boiling two-phase flow patterns, two-phase flow instability, and efficiency are explored. The working fluid on the hot and cold sides are helium and liquid methanol, respectively. The silicon-based MCHE, which has dimensions of 20 mm × 20 mm, is designed with 18 parallel microchannels on both sides and is prepared using microfabrication processes. Four types of two-phase flow patterns – bubbly-elongated slug flow, annular flow, annular flow with liquid film breakup, and dryout are identified in both types of MCHE that are studied. A flow pattern map is then constructed on the plane of the methanol mass flux versus heat flux for both types of MCHE. In the counter-current MCHE, the efficiency increases significantly with an increase in the mass flux in both the single- and two-phase flow regions, while the effect of mass flux is insignificant in the co-current MCHE. In the two-phase flow region, the efficiency of both types of MCHEs gradually increases with an increase in the hot-side thermal power until the CHF is approached. The highest efficiency obtained in the present study is about 0.85 and 0.90 for the co- and counter-current MCHEs, respectively.  相似文献   

5.
Flow boiling of the perfluorinated dielectric fluid FC-77 in a silicon microchannel heat sink is investigated. The heat sink contains 60 parallel microchannels each of 100 μm width and 389 μm depth. Twenty-five evenly distributed temperature sensors in the substrate yield local heat transfer coefficients. The pressure drop across the channels is also measured. Experiments are conducted at five flow rates through the heat sink in the range of 20–80 ml/min with the inlet subcooling held at 26 K in all the tests. At each flow rate, the uniform heat input to the substrate is increased in steps so that the fluid experiences flow regimes from single-phase liquid flow to the occurrence of critical heat flux (CHF). In the upstream region of the channels, the flow develops from single-phase liquid flow at low heat fluxes to pulsating two-phase flow at high heat fluxes during flow instability that commences at a threshold heat flux in the range of 30.5–62.3 W/cm2 depending on the flow rate. In the downstream region, progressive flow patterns from bubbly flow, slug flow, elongated bubbles or annular flow, alternating wispy-annular and churn flow, and wall dryout at highest heat fluxes are observed. As a result, the heat transfer coefficients in the downstream region experience substantial variations over the entire heat flux range, based on which five distinct boiling regimes are identified. In contrast, the heat transfer coefficient midway along the channels remains relatively constant over the heat flux range tested. Due to changes in flow patterns during flow instability, the heat transfer is enhanced both in the downstream region (prior to extended wall dryout) and in the upstream region. A previous study by the authors found no effect of instabilities during flow boiling in a heat sink with larger microchannels (each 300 μm wide and 389 μm deep); it appears therefore that the effect of instabilities on heat transfer is amplified in smaller-sized channels. While CHF increases with increasing flow rate, the pressure drop across the channels has only a minimal dependence on flow rate once boiling is initiated in the microchannels, and varies almost linearly with increasing heat flux.  相似文献   

6.
In this paper, flow patterns and their transitions for refrigerant R134a boiling in a microfinned helically coiled tube are experimentally observed and analyzed. All the flow patterns occurred in the test can be divided into three dominant regimes, i.e., stratified-wavy flow, intermittent flow and annular flow. Experimental data are plotted in two kinds of flow maps, i.e., Taitel and Dukler flow map and mass flux versus vapor quality flow map. The transitions between various flow regimes and the differences from that in smooth straight tube have also been discussed. Martinelli parameter can be used to indicate the transition from intermittent flow to annular flow. The transition from stratified-wavy flow to annular or intermittent flow is identified in the vapor quality versus mass flux flow map. The flow regime is always in stratified-wavy flow for a mass flux less than 100 kg/m2 s.The two-phase frictional pressure drop characteristics in the test tube are also experimentally studied. The two-phase frictional multiplier data can be well correlated by Lockhart–Martinelli parameter. Considering the corresponding flow regimes, i.e., stratified and annular flow, two frictional pressure drop correlations are proposed, and show a good agreement with the respective experimental data.  相似文献   

7.
Measurements of two-phase flow pressure drop have been made during a phase-change heat transfer process with refrigerant (R-134a) as a working fluid for a wide range of pressures right up to the critical pressure. The experiments were conducted in a uniformly heated vertical tube of 12.7 mm internal diameter and 3 m length over a heat flux range of 35–80 kW/m2, mass flux range of 1200–2000 kg/m2 s, exit quality range of 0.19–0.81 and for reduced pressures ranging from 0.24 to 1 with a fixed inlet subcooling of 3 °C. The measurements were compared with the predictions from the homogeneous flow model, a separated flow model using correlations drawn from the literature for void fraction and frictional pressure drop, and finally, using a flow pattern-based predictive method accounting specifically for bubbly, slug and annular flow regimes. It was found that the best results were obtained with the flow pattern-based approach with a mean deviation of ±20% over the entire pressure range.  相似文献   

8.
Boiling flows of R-134a and R-22 fluids in a 0.50 mm circular channel have been simulated to analyze bubbly flow, bubbly/slug flow, slug flow and slug/semi-annular flow depending on bubble evolution. The vapor–liquid interface was captured using VOF method. We studied the behavior of bubble growth and coalescence related to flow pattern transitions (bubbly/slug flow to slug flow, slug flow to slug/semi-annular flow) and analyzed the effect of fluid properties on transition lines. Some parameters, including heat flux, mass velocity, ONB point, vapor velocity, bubble lifting diameter, growth rate and generation frequency, have been analyzed in detail. The results show that bubble growth and coalescence are important factors for flow pattern transitions. The flow patterns at the micro-channel outlet predicted by simulation were in agreement with phenomena observed in experiments for bubbly/slug flow, slug flow and slug/semi-annular flow. In addition, the peak bubble frequency at the outlet was predicted and the general shape of the bubble frequency distribution at the outlet from simulation was found to be consistent with the achieved experimental results.  相似文献   

9.
Characteristics of air–water two-phase flow patterns in a miniature square channel having a gas permeable sidewall were investigated experimentally. Water was fed into the channel from its entrance, while air was injected uniformly into the channel along the permeable sidewall. This configured two-phase flow problem is encountered in direct feed methanol fuel cells. Flow patterns in both vertical upward and horizontal flows were identified using a high-speed motion analyzer. The visualization shows that the typical flow pattern encountered in the conventional co-current gas–liquid two-phase flow, such as bubbly flow, plug flow, slug flow and annular flow were also observed in the present work. However, unlike the conventional co-current gas–liquid two-phase flow in a channel with gas and liquid uniformly entering from one of its ends, for the flow configuration considered in this work, the stratified flow and wavy flow were not found in horizontal flow. And a so-called “single layer bubbly flow” was found in vertical upward flow, which is characterized by a mono small-gas-bubble layer existing adjacent to the surface of the permeable sidewall with the reminding space occupied by the liquid phase. Four transitional flow patterns such as bubbly-plug flow, bubbly-slug flow, plug–slug flow, and slug-annular flow, were found to exist between the distinct flow patterns. Finally, the flow regime maps for various liquid volumetric fluxes are presented in terms of mass quality versus the volumetric flux of gas phase.  相似文献   

10.
A visualization study has been conducted to investigate the transition from annular flow to plug/slug flow in the condensation of steam in two different sets of parallel microchannels, having hydraulic diameters of 90 μm and 136 μm, respectively. The steam in the parallel microchannels was cooled on the bottom by forced convection of water and by natural convection of air from the top. It is found that the location, where the transition from annular flow to plug/slug flow takes place, depends on mass flux and cooling rate of steam. The effects of mass flux and cooling rate on the occurrence frequency of the injection flow in a single microchannel, having a hydraulic diameter of 120 μm and 128 μm, respectively, are investigated. It is found that two different shapes of injection flow occur in the smooth annular flow in microchannels: injection flow with unsteady vapor ligament occurring at low mass flux (or high cooling rate) and injection flow with steady vapor ligament occurring at high mass flux (or low cooling rate). It is also found that increase of steam mass flux, decrease of cooling rate, or decrease of the microchannel diameter tends to enhance instability of the condensate film on the wall, resulting in occurrence of the injection flow further toward the outlet with an increase in occurrence frequency.  相似文献   

11.
A flow regime based condensation model is developed for refrigerants in single, smooth, horizontal tubes utilizing a generalized probabilistic two-phase flow map. Flow map time fraction information is used to provide a physically based weighting of heat transfer models developed for different flow regimes. The developed model is compared with other models in the literature, with experimentally obtained condensation data of R134a in 8.92 mm diameter tubes, and with data found in the literature for 3.14 mm, 7.04 mm, and 9.58 mm tubes with R11, R12, R134a, R22, R410A, and R32/R125 (60/40% by weight) refrigerants and a wide range of mass fluxes and qualities.  相似文献   

12.
Two-phase flow patterns of nitrogen gas and aqueous CuO nanofluids in a vertically capillary tube were investigated experimentally. The capillary tube had an inner diameter of 1.6 mm and a length of 500 mm. Water-based CuO nanofluid was a suspension consisted of water, CuO nanoparticles and sodium dodecyl benzol sulphate solution (SDBS). The mass concentration of CuO nanoparticles varied from 0.2 wt% to 2 wt%, while the volume concentration of SDBS varied from 0.5% to 2%. The gas superficial velocity varied from 0.1 m/s to 40 m/s, while the liquid superficial velocity varied from 0.04 m/s to 4 m/s. Experiments were carried out under atmospheric pressure and at a set temperature of 30 °C. Compared with conventional tubes, flow pattern transition lines occur at relatively lower water and gas flow velocities for gas–water flow in the capillary tube. While, flow pattern transition lines for gas–nanofluid flow occur at lower liquid and gas flow velocities than those for gas–water in the capillary tube. The effect of nanofluids on the two-phase flow patterns results mainly from the change of the gas–liquid surface tension. Concentrations of nanoparticles and SDBS have no effects on the flow patterns in the present concentration ranges.  相似文献   

13.
A capacitive void fraction sensor was developed to study the objectivity in flow pattern mapping of horizontal refrigerant two-phase flow in macroscale tubes. Sensor signals were gathered with R410A and R134a in a smooth tube with an inner diameter of 8 mm at a saturation temperature of 15 °C in the mass velocity range of 200–500 kg/m2 s and vapour quality range from 0 to 1 in steps of 0.025. A visual classification based on high speed camera images is made for comparison reasons. A statistical analysis of the sensor signals shows that the average, the variance and a high frequency contribution parameter are suitable for flow regime classification into slug flow, intermittent flow and annular flow by using the fuzzy c-means clustering algorithm. This soft-clustering algorithm predicts the slug/intermittent flow transition very well compared to our visual observations. The intermittent/annular flow transition is found at slightly higher vapour qualities for R410A compared to the prediction of Barbieri et al. (2008) [20]. An excellent agreement was obtained with R134a. This intermittent/annular flow transition is very gradual. A probability approach can therefore better describe such a transition. The membership grades of the cluster algorithm can be interpreted as flow regime probabilities. Probabilistic flow pattern maps are presented for R410A and R134a in an 8 mm ID tube.  相似文献   

14.
Base liquid film thickness distribution, wave behavior, and pressure loss measurements have been obtained for 237 horizontal two-phase (air–water) flow conditions in 8.8 and 15.1 mm I.D. tubes in the wavy and annular regimes. The behaviors measured indicate the presence of a transitional wavy-annular regime at flow rates traditionally labeled as annular in these small diameter tubes. Data for a 26.3 mm I.D. tube do not show these same trends.  相似文献   

15.
Flow boiling heat transfer of R-134a refrigerant in a circular mini-channel, 600 mm long with a diameter of 1.75 mm, is investigated experimentally in this study. The test section is a stainless steel tube placed horizontally. Flow pattern and heat transfer coefficient data are obtained for a mass flux range of 200–1000 kg/m2 s, a heat flux range of 1–83 kW/m2 and saturation pressures of 8, 10, and 13 bar. Five different flow patterns including slug flow, throat-annular flow, churn flow, annular flow and annular-rivulet flow are observed and the heat transfer coefficient data for different flow patterns are presented. The heat transfer coefficient increases with increasing heat flux but is mostly independent of mass flux and vapour quality. In addition, it is indicated from the experiments that the higher the saturation pressure, the lower is the heat transfer coefficient. Comparisons of the present data with the existing correlations are also presented.  相似文献   

16.
This study presents flow visualizations and two-phase frictional pressure drop data for three rectangular channels with channel height of 3, 6 and 9 mm, and a fixed width of 3 mm. It is found that the stratified flow pattern still exists for an aspect ratio of unity at a low mass flux of 100 kg/m2 s but it completely vanishes when G > 200 kg/m2s. For the same plug flow of intermittent flow pattern, the number of plug increases whereas its length decreases when the aspect ratio is increased. This is especially pronounced when the mass flux is further increased over 500 kg/m2 s. The major departure of the observed flow pattern relative to the conventional Mandhane flow map is the transition boundary for slug/annular had been moved to a much lower superficial vapor velocity. The two-phase frictional pressure drop data are compared to homogeneous and Chisholm method, Wambsganss and Ide-Fukano correlations. It is found that none of the existing methods or correlations can satisfactorily predict the two-phase pressure gradient in rectangular channels. A modified C factor of Chisholm method considering the effect of aspect ratio was proposed from the empirical fit with the data sets of Wambsganss et al., Ide-Fukano, and this study. The corresponding mean deviations of the proposed correlation against the datasets are 24.99%, 10.83% and 10.73%, respectively. This correlation is applicable in wide rages of mass flux (50 < G < 700 kg/m2 s), vapor quality (0.001 < x < 0.95), Martinelli parameter (0.05 < X < 20) and aspect ratio (0.1 < A < 1.0).  相似文献   

17.
A test rig to study R134a flow boiling inside mini and micro-channels has been constructed. The test section is made up of a glass tube and several ITO conductive layers as heaters. A novel image processing technique has been developed for the study of R134a flow boiling regimes. The software routine extracts the bubble contours, measures geometrical features of each frame and collects the data analytically and statistically. The results refer to mass flux between 20 and 122 kg/m2 s and the heat flux between 200 and 45,000 W/m2, at the saturation temperatures of 20–25 °C. The tube inner diameter is 4 mm and the heated length was globally of 320 mm, distributed in eight shorter heaters of 40 mm each. The main goals are the development of a method that, starting from the analysis of several parameters, is able to identify the flow pattern inside the tube, as well as the study of the effects of coalescence on the flow pattern development along the tube.The flow patterns have been identified from a statistical point of view and the “transition zone” has been quantitatively characterized. Part of the analysis is then devoted to the flow pattern variation along the test section. The experiments demonstrated that coalescence is a phenomenon that can be analyzed also in terms of a statistical approach and that the flow pattern variations are not only a function of the mass flux and the quality, but along the tube bubble coalescence and gravity effects have a role in the flow patterns appearance.  相似文献   

18.
In this first part of a two-part study, experiments were performed to investigate condensation of FC-72 along parallel, square micro-channels with a hydraulic diameter of 1 mm and a length of 29.9 cm, which were formed in the top surface of a solid copper plate. The condensation was achieved by rejecting heat to a counter flow of water through channels brazed to the underside of the copper plate. The FC-72 entered the micro-channels slightly superheated, and operating conditions included FC-72 mass velocities of 68–367 kg/m2 s, FC-72 saturation temperatures of 57.2–62.3 °C, and water mass flow rates of 3–6 g/s. Using high-speed video imaging and photomicrographic techniques, five distinct flow regimes were identified: smooth-annular, wavy-annular, transition, slug, and bubbly, with the smooth-annular and wavy-annular regimes being most prevalent. A detailed pressure model is presented which includes all components of pressure drop across the micro-channel. Different sub-models for the frictional and accelerational pressure gradients are examined using the homogenous equilibrium model (with different two-phase friction factor relations) as well as previous macro-channel and mini/micro-channel separated flow correlations. Unexpectedly, the homogenous flow model provided far more accurate predictions of pressure drop than the separated flow models. Among the separated flow models, better predictions were achieved with those for adiabatic and mini/micro-channels than those for flow boiling and macro-channels.  相似文献   

19.
The main objective of the present investigation is to study heat transfer in parallel micro-channels of 0.1 mm in size. Comparison of the results of this study to the ones obtained for two-phase flow in “conventional” size channels provides information on the complex phenomena associated with heat transfer in micro-channel heat sinks. Two-phase flow in parallel micro-channels, feeding from a common manifold shows that different flow patterns occur simultaneously in the different micro-channels: liquid alone (or single-phase flow), bubbly flow, slug flow, and annular flow (gas core with a thin liquid film, and a gas core with a thick liquid film). Although the gas core may occupy almost the entire cross-section of the triangular channel, making the side walls partially dry, the liquid phase always remained continuous due to the liquid, which is drawn into the triangular corners by surface tension. With increasing superficial gas velocity, a gas core with a thin liquid film is observed. The visual observation showed that as the air velocity increased, the liquid droplets entrained in the gas core disappeared such that the flow became annular. The probability of appearance of different flow patterns should be taken into account for developing flow pattern maps. The dependence of the Nusselt number, on liquid and gas Reynolds numbers, based on liquid and gas superficial velocity, respectively, was determined in the range of ReLS = 4–56 and ReGS = 4.7–270. It was shown that an increase in the superficial liquid velocity involves an increase in heat transfer (NuL). This effect is reduced with increasing superficial gas velocity, in contrast to the results reported on two-phase heat transfer in “conventional size” channels.  相似文献   

20.
This study experimentally examines the influence of two-phase flow on the fluid flow in membraneless microfluidic fuel cells. The gas production rate from such fuel cell is firstly estimated via corresponding electrochemical equations and stoichiometry from the published measured current–voltage curves in the literature to identify the existence of gas bubble. It is observed that O2 bubble is likely to be generated in Hasegawa’s experiment when the current density exceeds 30 mA cm?2 and 3 mA cm?2 for volumetric flow rates of 100 μL min?1 and 10 μL min?1, respectively. Besides, CO2 bubble is also likely to be presented in the Jayashree’s experiment at a current density above 110 mA cm?2 at their operating volumetric liquid flow rate, 0.3 mL min?1. Secondly, a 1000-μm-width and 50-μm-depth platinum-deposited microfluidic reactor is fabricated and tested to estimate the gas bubble effect on the mixing in the similar microchannel at different volumetric flow rates. Analysis of the mixing along with the flow visualization confirm that the membraneless fuel cell should be free from any bubble, since the mixing index of the two inlet streams with bubble generation is almost five times higher than that without any bubble at the downstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号