首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
以天然气为燃料,金属氧化物为载氧体,实现化学链置换燃烧(Chemical Looping Combustion-CLC)。“燃烧”气相产物H2O(汽)+CO2,冷凝水后,可分离出CO2。结合燃气蒸汽联合循环技术,实现能量的梯级利用,构成新型化学链置换燃烧联合循环,高效发电同时分离CO2。建立了化学链置换燃烧空气反应器(AR)和燃料反应器(FR)的质量平衡和能量平衡数学模型,对燃烧特性进行仿真计算。研究结果表明:载氧体氧化比率和还原比率增大,FR的出力及所需载氧体的最小量增加,使AR空气量减小;加大循环倍率或升高AR出口预设温度均使FR出口温度升高,AR空气量将更减少。这部分计算可为化学链置换燃烧技术的实验研究和系统概念设计提供基础数据。  相似文献   

2.
旋风分离器作为循环流化床锅炉最重要的组成部分之一,其主要作用是将大量的高温固体物料从烟气中分离出来送回燃烧室,以维持燃烧室的快速流化状态,保证物料多次循环,反复燃烧和反应,这样才能达到理想的燃烧效率。因此,旋风分离器的分离器效率以及防磨更为重要,它的设计成功与否直接影响了锅炉的性能优劣。探讨了历年来循环流化床锅炉的发展趋势以及旋风分离器的发展动向,阐述了影响旋风分离器分离效率的几个主要性能因素:烟速、颗粒尺寸大小、颗粒浓度以及分离器筒体内的轴向速度等。在提高旋风分离器分离效率的同时又对旋风分离器的防磨提出了相应的优化措施。  相似文献   

3.
化学链燃烧技术(CLC)是一种含有CO2内分离的新型燃烧技术。以Fe2O3为载氧体,在10 kWth级串行流化床上进行了生物质化学链燃烧的试验研究,探讨了燃料反应器温度、生物质进料量和水蒸气量对2个反应器(燃料反应器+空气反应器)气体产物组成的影响。结果表明较高的反应器温度虽然有助于速控步(即气化反应)的进行,但是受载氧体的载氧率和颗粒循环速率的影响反而不利于CO2捕集。随着生物质进料量的增加,燃料反应器需氧量的上升,不利于燃料反应器CO2的捕集。而水蒸气量的增加有利于燃料反应器CO2的捕集,但是同时也导致H2的出现。  相似文献   

4.
在煤化学链燃烧过程中,煤焦颗粒易被载氧体颗粒流携带进入空气反应器,导致系统碳捕集效率降低.针对煤焦与载氧体二元颗粒分离问题,提出了环形炭分离器与燃料反应器耦合设计,搭建并运行了耦合环形炭分离器的煤化学链燃烧热态实验系统.实验结果表明,反应器实现了稳定且循环量可控的高温固体循环、合理的压差平衡、稳定的温度分布以及稳定连续的给煤运行.基于环形炭分离器的分离作用,可有效避免煤焦进入空气反应器,其出口CO_2体积分数低至0.75%左右(环形区域气速为1.4 m/s),进而提高系统碳捕集效率.  相似文献   

5.
反应器系统是以煤为燃料的化学链燃烧系统的基础组成部分,是提供载氧体反应的场所,可将载氧体以合适的速率在不同的反应器之间传输,实现气固分离和不同性质颗粒的分离。因此,设计、研究反应器系统是实现以煤为燃料的化学链燃烧的根本前提。本文对反应器系统中的空气反应器、燃料反应器、炭分离器及整体的循环特性进行研究,总结建立了以煤为燃料的化学链燃烧反应器系统的设计方法,在此基础之上设计了3 MWth的化学链燃烧示范装置,为以煤为燃料的化学链燃烧热态系统的建造与运行奠定了基础。  相似文献   

6.
燃煤循环流化床模型与试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
沈来宏 《热能动力工程》2000,15(3):249-251,259
利用循环流化床内气-固两相流动等基础方面的研究成果,根据本文床内气固浓-淡流动模型,建立适用不同结构参数的循环流化床燃烧模型,考虑了床内气体、固体颗粒的返混、循环过程,以及煤燃烧、NO的生成和分解、颗粒磨损等因素。在循环流化床燃烧试验台上进行实验研究,模型仿真结果和实验数据吻合良好,表明气固两相浓-淡流动模型所建立的循环流化床燃烧系统模型可以正确地模拟循环流化床的燃烧过程。  相似文献   

7.
采用三准则相似理论设计了循环流化床烟气脱硫气固两相流动试验台.通过对循环流化床脱硫反应器试验装置内沿高度方向阻力分布和不同高度截面上局部颗粒质量通量的测量,详细地研究了脱硫反应器内气固两相流动规律和内循环特性.结果表明:脱硫反应器阻力主要集中在文丘里管段,而且随着循环物料量和气体流量的增加,系统阻力显著增加;脱硫反应器内气固两相流动呈典型的环核流动结构,边壁下降流颗粒浓度高,中心区域上升流颗粒浓度低,且固体质量回流比率随着脱硫反应器高度的上升而下降.研究结果为循环流化床烟气脱硫系统的设计与放大提供了依据.  相似文献   

8.
循环流化床锅炉的现状及发展   总被引:2,自引:0,他引:2  
循环流化床燃烧技术是一种清洁煤燃烧技术,以这种燃烧技术设计的锅炉具有较好的可靠性、经济性和环保性。分析了循环流化床锅炉旋风分离器的形式和整体布置的发展与改进,指出第三代采用方形分离器、冷却型紧凑布置的循环床燃烧技术将成为将来的发展方向。  相似文献   

9.
为了更好地认知以循环流化床形式作为燃料反应器的化学链燃烧过程,基于颗粒动理学理论,考虑反应器中颗粒聚团的影响,运用双流体模型,对循环流化床反应器内化学链燃烧过程进行模拟,获得了反应器内流场以及组分分布规律。模拟结果再现了颗粒聚团的多尺度流动机构以及载氧体颗粒在床中呈现出的环核流动结构,结果表明,这种非均匀分布会导致燃料转化率的下降。  相似文献   

10.
循环流化床锅炉又称第二代沸腾炉,它是从鼓泡床锅炉发展而来,是在鼓泡床的基础上,增加床内流速,使床料和燃料“流态化”同时取消床层内的沉浸受热面,在炉膛出口(或过热器后部)安装气、固分离器,将从烟气中分离下来的固体颗粒,通过回送装置再次进入炉膛燃烧.  相似文献   

11.
A chemical looping combustion process for coal using interconnected fluidized beds with inherent separation of CO2 is proposed in this paper. The configuration comprises a high velocity fluidized bed as an air reactor, a cyclone, and a spout-fluid bed as a fuel reactor. The high velocity fluidized bed is directly connected to the spout-fluid bed through the cyclone. Gas composition of both fuel reactor and air reactor, carbon content of fly ash in the fuel reactor, carbon conversion efficiency and CO2 capture efficiency were investigated experimentally. The results showed that coal gasification was the main factor which controlled the contents of CO and CH4 concentrations in the flue gas of the fuel reactor, carbon conversion efficiency in the process of chemical looping combustion of coal with NiO-based oxygen carrier in the interconnected fluidized beds. Carbon conversion efficiency reached only 92.8% even when the fuel reactor temperature was high up to 970 °C. There was an inherent carbon loss in the process of chemical looping combustion of coal in the interconnected fluidized beds. The inherent carbon loss was due to an easy elutriation of fine char particles from the freeboard of the spout-fluid bed, which was inevitable in this kind of fluidized bed reactor. Further improvement of carbon conversion efficiency could be achieved by means of a circulation of fine particles elutriation into the spout-fluid bed or the high velocity fluidized bed. CO2 capture efficiency reached to its equilibrium of 80% at the fuel reactor temperature of 960 °C. The inherent loss of CO2 capture efficiency was due to bypassing of gases from the fuel reactor to the air reactor, and the product of residual char burnt with air in the air reactor. Further experiments should be performed for a relatively long-time period to investigate the effects of ash and sulfur in coal on the reactivity of nickel-based oxygen carrier in the continuous CLC reactor.  相似文献   

12.
This paper propose recirculating fluidized bed (RCFB) reactor for chemical‐looping combustion (CLC) to overcome some of the issues associated with the existing interconnected reactors arrangements like low residence time of bed material in the air reactor, high attrition of bed material in the cyclone separator, cluster formation in the air reactor, complex operation involving loop seals and high heat losses. RCFB has high solid circulation rate, long residence time, efficient fuel–oxygen carrier contact, low heat losses and low gas leak in between the reactors, as compared to the existing reactor configurations. A cold model study was performed on a Perspex made, semicircular, transparent RCFB reactor. A single RCFB reactor was operated in the alternate oxidation and fuel burning cycles to simulate the interconnected reactors arrangement for CLC. The generated experimental data has been used to predict the optimal RCFB reactor configuration for a RCFB‐based CLC power plant. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The work described relates to the development of a coal-fired fluidized bed furnace for the generation of hot gases for industrial heating processes. Following a programme of coal model studies of the internal solids circulation rates between adjacent beds, a furnace test facility was developed in the form of two interconnected fluidized beds. One bed is operated as a partial gasifier/pyrolyser and the other as a char combustor. The gas produced by pyrolysis is mixed above the bed with the oxygen-rich gas from the char combustor and burns to give hot gas at temperatures of up to 1600°C. The use of low ash washed singles grade coal (13–25 mm size range) gives an overall combustion efficiency better than 98 per cent.  相似文献   

14.
Chemical looping combustion is a novel technology that can be used to meet the demand on energy production without CO2 emission. To improve CO2 capture efficiency in the process of chemical looping combustion of coal, a prototype configuration for chemical looping combustion of coal is made in this study. It comprises a fast fluidized bed as an air reactor, a cyclone, a spout-fluid bed as a fuel reactor and a loop-seal. The loop-seal connects the spout-fluid bed with the fast fluidized bed and is fluidized by steam to prevent the contamination of the flue gas between the two reactors. The performance of chemical looping combustion of coal is experimentally investigated with a NiO/Al2O3 oxygen carrier in a 1 kWth prototype. The experimental results show that the configuration can minimize the amount of residual char entering into the air reactor from the fuel reactor with the external circulation of oxygen carrier particles giving up to 95% of CO2 capture efficiency at a fuel reactor temperature of 985 °C. The effect of the fuel reactor temperature on the release of gaseous products of sulfur species in the air and fuel reactors is carried out. The fraction of gaseous sulfur product released in the fuel reactor increases with the fuel reactor temperature, whereas the one in the air reactor decreases correspondingly. The high fuel reactor temperature results in more SO2 formation, and H2S abatement in the fuel reactor. The increase of SO2 in the fuel reactor accelerates the reaction of SO2 with CO to form COS, and COS concentration in the fuel reactor exit gas increases with the fuel reactor temperature. The SO2 in the air reactor exit gas is composed of the product of sulfur in residual char burnt with air and that of nickel sulfide oxidization with air in the air reactor. Due to the evident decrease of residual char in the fuel reactor with increasing fuel reactor temperature, it results in the decrease of residual char entering the air reactor from the fuel reactor, and the decrease of SO2 from sulfur in the residual char burnt with air in the air reactor.  相似文献   

15.
This paper analyzes a novel process for producing hydrogen and electricity from coal, based on chemical looping combustion (CLC) and gas turbine combined cycle, allowing for intrinsic capture of carbon dioxide. The core of the process consists of a three-reactors CLC system, where iron oxide particles are circulated to: (i) oxidize syngas in the fuel reactor (FR) providing a CO2 stream ready for sequestration after cooling and steam vapor condensation, (ii) reduce steam in the steam reactor (SR) to produce hydrogen, (iii) consume oxygen in the air reactor (AR) from air releasing heat to sustain the thermal balance of the CLC system and to generate electricity. A compacted fluidized bed, composed of two fuel reactors, is proposed here for full conversion of fuel gases in FR. The gasification CLC combined cycle plant for hydrogen and electricity cogeneration with Fe2O3/FeAl2O4 oxygen carriers was simulated using ASPEN® PLUS software. The plant consists of a supplementary firing reactor operating up to 1350 °C and three-reactors SR at 815 °C, FR at 900 °C and AR at 1000 °C. The results show that the electricity and hydrogen efficiencies are 14.46% and 36.93%, respectively, including hydrogen compression to 60 bar, CO2 compression to 121 bar, The CO2 capture efficiency is 89.62% with a CO2 emission of 238.9 g/kWh. The system has an electricity efficiency of 10.13% and a hydrogen efficiency of 41.51% without CO2 emission when supplementary firing is not used. The plant performance is attractive because of high energy conversion efficiency and low CO2 emission. Key parameters that affect the system performance are also discussed, including the conversion of steam to hydrogen in SR, supplementary firing temperature of the oxygen depleted air from AR, AR operation temperature, the flow of oxygen carriers, and the addition of inert support material to the oxygen carrier.  相似文献   

16.
A relatively long-term experiment for chemical looping combustion of coal with NiO/Al2O3 oxygen carrier was carried out in a 10 kWth continuous reactor of interconnected fluidized beds, and 100 h of operation was reached with the same batch of the oxygen carrier. The reactivity deterioration of the oxygen carriers was present during the experimental period. The reactivity deterioration of reacted oxygen carriers at different experimental stages was evaluated using X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray fluorescence spectrometer. SEM analysis showed no significant change in the morphology of the nickel-based oxygen carrier at the fuel reactor temperature ?940 °C, but loss of surface area and porosity of reacted oxygen carriers was observed when the fuel reactor temperature exceeded 960 °C. The results show that the sintering effect have mainly contributed to the reactivity deterioration of reacted oxygen carriers in the CLC process for coal, while the effects of coal ash and sulfur can be ignored. The oxidization of reduced oxygen carrier with air was an intensive exothermic process, and the high temperature of oxygen carrier particles led to sintering on the surface of oxygen carrier particles in the air reactor. Attention must be paid to control the external circulation of oxygen carrier particles in the interconnected fluidized beds in order to efficiently transport heat from the air reactor to the fuel reactor, and reduce the temperature of oxygen carrier particles in the air reactor. Improvement of reactivity deterioration of reacted oxygen carriers was achieved by the supplement of steam into the fuel reactor. Nevertheless, NiO/Al2O3 is still one of the optimal oxygen carriers for chemical looping combustion of coal if the sintering of oxygen carrier is minimized at the suitable reactor temperature.  相似文献   

17.
煤炭的高效洁净燃烧是实现洁净煤发电的一个重要领域,是洁净煤发电技术的核心。而循环流化床燃烧技术是一种新型的煤燃烧与发电技术,不仅可以大幅度减少NOx排放,易于脱除SO2的技术优势,而且具有煤种适应面广、高燃烧效率以及炉内脱硫脱氮的特点而得到推广。分析了循环流化床锅炉NOx的危害、生成机理及影响因素,在此基础上探讨了其控制措施,并提出未来烟气净化的方向。  相似文献   

18.
本文主要以无锡华光锅炉股份有限公司生产的UG-75/5.3-M19型中置式高温旋风分离器循环流化床锅炉为例,结合本厂实际运行经验,详细介绍了该类型锅炉自调试阶段开始遇到的一些诸如燃烧问题、返料问题、给煤皮带漏灰问题等,并给出相应的解决方法。  相似文献   

19.
A mathematical model for a bubbling fluidized bed has been developed to simulate the performance of the fuel-reactor in chemical-looping combustion (CLC) systems. This model considers both the fluid dynamic of the fluidized bed and freeboard and the kinetics of reduction of the oxygen-carrier, here CuO impregnated on alumina. The main outputs of the model are the conversion of the carrier and the gas composition at the reactor exit, the axial profiles of gas concentrations and the fluid dynamical structure of the reactor. The model was validated using measurements when burning CH4 in a 10 kWth prototype using a Cu-based oxygen-carrier. The influence of the circulation rate of solids, the load of fuel gas, the reactor temperature and size of the oxygen-carrier particles were analyzed. Combustion efficiencies predicted by the model showed a good agreement with measurements. Having validated the model, the implications for designing and optimizing a fuel-reactor were as follows. The inventory of solids for a high conversion of the fuel was sensitive to the reactor’s temperature, the solids’ circulation rate and the extent to which the solids entering to the reactor had been regenerated. The optimal ratio of oxygen-carrier to fuel was found to be 1.7–4 for the Cu-based oxygen-carrier used here. In this range, the inventory of solids to obtain a combustion efficiency of 99.9% at 1073 K was less than 130 kg/MWth. In addition, the model’s results were very sensitive to the resistance to gas diffusing between the emulsion and bubble phases in the bed, to the decay of solids’ concentration in the freeboard and to the efficiency contact between gas and solids in the freeboard. Thus, a simplified model, ignoring any restriction to gas and solids contacting each other, will under-predict the inventory of solids by a factor of 2–10.  相似文献   

20.
Experimental Study on Coal Multi-generation in Dual Fluidized Beds   总被引:1,自引:0,他引:1  
An atmospheric test system of dual fluidized beds for coal multi-generation was built.One bubbling fluidized bedis for gasification and a circulating fluidized bed for combustion.The two beds are combined with two valves:one valve to send high temperature ash from combustion bed to the gasification bed and another valve to sendchar and ash from gasification bed to combustion bed.Experiments on Shenhua coal multi-generation were madeat temperatures from 1112 K to 1191 K in the dual fluidized beds.The temperatures of the combustor are stableand the char combustion efficiency is about 98%.Increasing air/coal ratio to the fluidized bed leads to theincrease of temperature and gasification efficiency.The maximum gasification efficiency is 36.7% and thecalorific value of fuel gas is 10.7 MJ/Nm3.The tar yield in this work is 1.5%,much lower than that of pyrolysis.Carbon conversion efficiency to fuel gas and flue gas is about 90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号