首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hybrid heat sink design with microchannels and stepped pin-fins is introduced for the hotspot-targeted thermal management of microprocessors. The thermal and hydraulic performance were assessed numerically and compared to that of a hybrid heat sink with uniform pin-fins. Both hybrid heat sinks were designed to have two zones using rectangular microchannels above the processor’s background area and an array of pin-fins (stepped and uniform pin-fins) over the hotspot area. Conjugate heat transfer analysis was performed with the entire heat sink as the computational domain by solving the three-dimensional Navier-Stokes and energy equations. The hybrid heat sink with stepped pin-fins exhibited remarkable improvement in the temperature uniformity at the hotspot as compared to the one with uniform pin-fins, along with ample improvements in the thermal resistance, maximum temperature rise at the hotspot, and pumping power. A parametric investigation was also performed for the hybrid heat sink with uniform pin-fins to find an optimum geometry based on two geometric parameters: the ratio of the diameter of the pin-fins to their pitch and the total number of pin-fins in the array. The results revealed improvements in the thermal performance, but the pumping power was increased.  相似文献   

2.
The present study uses a heat sink plate to conduct natural convection in order to examine different areas of the heat sink and the effects of mounting different quantities of LEDs on the same surface on the thermal mechanism performance. Based on the experimental results, when a heat sink plate is arranged vertically, the channel flow between the fins is parallel to gravity. The LED substrate plate temperature is different from that at the end of the fin, and rises with the increase of total power. The thermal resistance rises slowly and then declines with the increase of LED electric power. As for temperature change of the LED substrate and at the end of the fin, when the temperature difference is increased, it also increases the natural convection thrust. For thermal resistance, the environmental thermal resistance at the bottom of the heat sink plate is lower than at the middle and top sections. These LED power emissions will be changed synchronously. Regarding the LED quantity control, the rate of increase is the highest for the heat sink plate with 30 pcs LED, and the temperature is very high for the heat sink plate with 45 and 60 pcs LEDs when the power approaches 1 W. Moreover, the rising rate is the lowest for the heat sink plate with 60 pcs LEDs. Depending on the brightness requirement, the illuminant is provided by 60 pcs LEDs to obtain a lower temperature so that the system can reduce the thermal protective design. Evidence shows that a high conductivity heat pipe embedded in the channel can provide a more uniform temperature distribution. The present study provides a further understanding on the influence of different illuminant densities on the heat sink structure and the temperature difference in an LED heat transfer device, in order to provide a reference for heat sink design of a backlight module and LED illuminant module evaluation. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20321  相似文献   

3.
This paper is the first part of a three paper series studying the overall performance of a micro pin-fin heat sink with single phase liquid flow and different pin-fin geometries operating under and similar conditions. Two different heat sinks, one with square shaped pin-fins and the other with circular pin-fins are selected for study in this paper. The paper focuses on studying the effect of thermal resistance and pressure drop of micro heat sinks when subjected to various factors such as pitch distance in axial and transverse directions, aspect ratio of the pin-fin, hydraulic diameters of the pin-fin, and the liquid flow rate through the device. A figure of merit (FOM) involving both the thermal resistance and pressure drop across the heat sink is introduced in the paper and the performance is evaluated on the basis of this FOM. The heat sinks are subjected to uniform heat flux at the bottom of the heat sink and the characteristic study is based on constant Reynolds number of liquid flow at the entrance of the channel. Water is used as the fluid in this study. The study is conducted over the Reynolds number range of 50–500. The characteristic study is carried out with the help of simulations developed using commercially available computational fluid dynamics software CoventorWare?. The characteristic study carried out in this paper is divided into four cases. In the first case the axial pitch distance is varied between 350 μm and 650 μm by keeping the aspect ratio of the pin-fin structure constant at 0.5. For the second case the transverse pitch distance is varied between 150 μm and 300 μm and the aspect ratio is kept the same as in the first case. Third case studies the effect of varying the aspect ratio (between 0.33 and 1) of the pin-fin structures by keeping both pitches constant. Case four studies the variation in the performance of the heat sink with the change in the hydraulic diameter of the pin-fins. The study conducted in this paper reveals the importance of considering the pressure drop along with the thermal resistance in evaluating the overall performance of the micro pin-fin heat sink. At low Reynolds number (below 300) the heat sinks with circular pin-fins shows better performance compared with heat sinks with square pin-fins and vice versa at high Reynolds number (above 300). FOM varies considerably with the change in the parameters like axial pitch distance, transverse pitch distance, aspect ratio and hydraulic diameter of the pin-fins.  相似文献   

4.
The hydrodynamic and thermal characteristics of fractal-shaped microchannel network heat sinks are investigated numerically by solving three-dimensional N–S equations and energy equation, taking into consideration the conjugate heat transfer in microchannel walls. It is found that due to the structural limitation of right-angled fractal-shaped microchannel network, hotspots may appear on the bottom wall of the heat sink where the microchannels are sparsely distributed. With slight modifications in the fractal-shaped structure of microchannels network, great improvements on hydrodynamic and thermal performance of heat sink can be achieved. A comparison of the performance of modified fractal-shaped microchannel network heat sink with parallel microchannels heat sink is also conducted numerically based on the same heat sink dimensions. It is found that the modified fractal-shaped microchannel network is much better in terms of thermal resistance and temperature uniformity under the conditions of the same pressure drop or pumping power. Therefore, the modified fractal-shaped microchannel network heat sink appears promising to be used for microelectronic cooling in the future.  相似文献   

5.
Applications of microchannel heat sinks for dissipating heat loads have received great attention. Wavy channels are recognized to be an alternative cooling technology to enhance the heat transfer, and are successfully applied in heat exchangers. In this article, three kinds of liquid-cooling double-layer microchannel heat sinks, such as a rectangular straight microchannel heat sink, a parallel-flow wavy microchannel heat sink, and a counter-flow double-layer wavy microchannel heat sink, have been designed and the corresponding laminar flow and heat transfer have been investigated numerically. The effects of the wave amplitude and volumetric flow ratio on heat transfer, pressure drop, and thermal resistance are also observed. Results show that the counter-flow double-layer wavy microchannel heat sink is superior at a larger flow rate, and a more uniform temperature rise is achieved. For a slightly larger flow rate, the parallel flow layout shows better performance. In addition to the overall thermal resistance, other criteria for evaluation of the overall thermal performance, e.g., (Nu/Nu0)/(f/f0) and (Nu/Nu0)/(f/f0)1/3, are applied and similar results are obtained.  相似文献   

6.
针对芯片功耗与集成度提高而导致的局部热点问题,设计了一种用于芯片散热的复合热沉环路热管系统。建立了环路热管蒸发段模型,通过数值模拟的方法,证明了复合热沉环路热管系统能够降低热点温度,提高散热表面的温度均匀程度,且散热效果与热点的分布位置有关。当热点的热流密度为160W/cm2,热沉横向、纵向导热率分别为1500W/(m?K)、24W/(m?K)时,热点温度为88.88°C,相比于无热沉时降低了5.96°C。研究了不同热沉导热率下的热沉厚度对热点温度的影响,结果表明:若导热率各项同性,热点温度随热沉厚度的增加而降低,之后趋向不变;若为各项异性,存在最优的热沉厚度,使热点温度最低。  相似文献   

7.
Based on constructal theory, five different cases with multistage bifurcations are designed as well as one case without bifurcations, and the corresponding laminar fluid flow and thermal performance have been investigated numerically. All laminar fluid flow and heat transfer results are obtained using computation fluid dynamics, and a uniform wall heat flux thermal boundary condition is applied all heated surfaces. The inlet velocity ranges from 0.66 m/s to 1.6 m/s with the corresponding Reynolds number ranging from 230 to 560. The pressure, velocity, temperature distributions and averaged Nusselt number are presented. The overall thermal resistances versus inlet Reynolds number or pumping power are evaluated and compared for the six microchannel heat sinks. Numerical results show that the thermal performance of the microchannel heat sink with multistage bifurcation flow is better than that of the corresponding straight microchannel heat sink. The heat sink with a long bifurcation length in the first stage (Case 1A) is superior. The usage of multistage bifurcated plates in microchannel heat sink can reduce the overall thermal resistance and make the temperature of the heated surface more uniform (Case 3). It is suggested that proper design of the multistage bifurcations could be employed to improve the overall thermal performance of microchannel heat sinks and the maximum number of stages of bifurcations is recommended to be two. The study complements and extends previous works.  相似文献   

8.
A channel with a height- or width-tapered variation is designed to improve the thermal performance of a microchannel heat sink (MCHS). To this end, a three-dimensional MCHS model is constructed to analyze the effects of the height- and width-tapered ratios on the thermal performance of the MCHS. The thermal resistance and temperature distribution are taken as the thermal performance indicators. Numerical predictions show that the relationship between the thermal resistance and the width-tapered ratio is not monotonic at the fixed pumping power. The thermal resistance first decreases and then increases. A similar behavior is also exhibited by the height-tapered ratio. However, the height-tapered ratio effects can be negligible. It is also found that the width-tapered-channel design has a lower and a relatively uniform temperature distribution compared to parallel or height-tapered channel design. Moreover, the MCHS with width-tapered channel design showed a maximum enhancement in thermal performance of around 16.7% over that of the parallel-channel design when the pumping power is larger than 0.4 W.  相似文献   

9.
以不均匀换热系数模型为基础,数值研究了侧面泵浦板状激光介质在热沉冷却情况下,热沉的几何参数对介质最高温度及最大应力的影响。结果表明,热沉材料对激光介质热效应的影响表现在热阻效应和温度均匀化效应两个方面:热沉材料的导热性能较差时,介质最高温度及最大应力随介质厚度的增加而增加;热沉材料的导热性能较好时,不同热沉厚度下介质最高温度及最大应力变化很小。随着热沉长度的增加,介质内最高温度和最大应力均下降。  相似文献   

10.
A numerical study is conducted to predict the thermal performance of a parallel flow two-layered microchannel heat sink on heat transfer and compared to the case of counterflow for various channel aspect ratios. Findings reveal that the parallel flow configuration leads to a better heat transfer performance except for high Reynolds number and high channel aspect ratio. Further study on the horizontal rib thickness shows that lower thermal resistance can be achieved in a parallel flow two-layered microchannel heat sink with smaller thickness of middle rib.  相似文献   

11.
We demonstrated a new silicon microchannel heat sink, composing of parallel longitudinal microchannels and several transverse microchannels, which separate the whole flow length into several independent zones, in which the thermal boundary layer is in developing. The redeveloping flow is repeated for all of the independent zones thus the overall heat transfer is greatly enhanced. Meanwhile, the pressure drops are decreased compared with the conventional microchannel heat sink. Both benefits of enhanced heat transfer and decreased pressure drop ensure the possibility to use “larger” hydraulic diameter of the microchannels so that less pumping power is needed, which are attractive for high heat flux chip cooling. The above idea fulfilled in microscale is verified by a set of experiments. The local chip temperature and Nusselt numbers are obtained using a high resolution Infrared Radiator Imaging system. Preliminary explanation is given on the decreased pressure drop while enhancing heat transfer. The dimensionless control parameter that guides the new heat sink design and the prospective of the new heat sink are discussed.  相似文献   

12.
Using CFD software FLUENT, we investigated the effect of the angle of inclination of a plate heat shield on the thermal and hydraulic performance of a plate-fin heat sink. The variation of this angle causes a substantial and complicated variation of the flow field in space both upstream and downstream near such a heat sink. This distinctive behavior modifies the pressure drop between the inlet and outlet of the investigated duct, but that variation influences only slightly the flow field in the space from fin to fin, and thus the thermal resistance of the heat sink. This trend is further smoothed with increasing Reynolds number and height of the heat sink. As a compromise between the demands of small thermal resistance and a small pressure drop, the angle of inclination of a plate heat shield must be chosen carefully.  相似文献   

13.
Concentrated photovoltaic cell (CPV) is a solar energy harvesting device that converts solar energy into electrical energy. However, the performance and efficiency of the CPV are heavily dependent on the temperature. Besides, nonuniformity of temperature distribution on the CPV will lead to thermal aging and affects the cycle life. Hence, an effective cooling system is required to remove excess heat generated to ensure that the CPV operates at optimum operating temperature with minimum variation of temperature. Metal foam is a new class of material that possesses huge potential for thermal management. In this study, a functionally graded metal foam is proposed for the CPV thermal management system. Computational thermal fluid dynamic analysis is conducted to investigate the effect of porosity and pore density on the flow field and thermal performance of the aluminum foam heat sink. The investigation results revealed that 10 PPI functionally graded aluminum foam heat sink with two stages of porosity gradient 0.794 and 0.682 produced the lowest pressure drop and highest thermal performance. Temperature difference of 3.9°C was achieved for a solar cell with total heat generation of 900 W under water mass flow rate of 20 gs−1.  相似文献   

14.
This work assesses the performance of plate-fin heat sinks in a cross flow. The effects of the Reynolds number of the cooling air, the fin height and the fin width on the thermal resistance and the pressure drop of heat sinks are considered. Experimental results indicate that increasing the Reynolds number can reduce the thermal resistance of the heat sink. However, the reduction of the thermal resistance tends to become smaller as the Reynolds number increases. Additionally, enhancement of heat transfer by the heat sink is limited when the Reynolds number reaches a particular value. Therefore, a preferred Reynolds number can be chosen to reduce the pumping power. For a given fin width, the thermal performance of the heat sink with the highest fins exceeds that of the others, because the former has the largest heat transfer area. For a given fin height, the optimal fin width in terms of thermal performance increases with Reynolds number. As the fins become wider, the flow passages in the heat sink become constricted. As the fins become narrower, the heat transfer area of the heat sink declines. Both conditions reduce the heat transfer of the heat sink. Furthermore, different fin widths are required at different Reynolds numbers to minimize the thermal resistance.  相似文献   

15.
The hydraulic and thermal performance of a plate-fin heat sink undergoing cross flow forced convection with the introduction of a shield was investigated. With a CFD numerical method, the influence of fin width, fin height, number of fins and Reynolds number were assessed without and with a shield. A shield that tends to decrease the bypass flow effect has a great influence on the variation of the thermal fluid field and the performance of the heat sink. The results of attaching a shield show that more coolant fluid is forced to flow into the fin-to-fin channel to enhance the heat transfer, increasing the pressure drop; this trend is significant at low Reynolds numbers. The decrease of thermal resistance due to the shield diminishes with increasing fin height, but increasing the width of the fins has a more radical effect. For a shield at a particular Reynolds number, the fin geometry should be selected carefully to fit the demands of enhanced effectiveness of heat transfer and decreased power consumption.  相似文献   

16.
The enhancement of convective heat transfer through a finned heat sink using interdigitated impeller blades is presented. The experimentally investigated heat sink is a subcomponent of an unconventional heat exchanger with an integrated fan, designed to meet the challenges of thermal management in compact electronic systems. The close integration of impeller blades with heat transfer surfaces results in a decreased thermal resistance per unit pumping power. The performance of the parallel plate air-cooled heat sink was experimentally characterized and empirically modeled in terms of nondimensional parameters. Dimensionless heat fluxes as high as 48 were measured, which was shown to be about twice the heat transfer rate of a traditional heat sink design using pressure-driven air flow at the same mass flow rate.  相似文献   

17.
This paper presents an effective method for predicting and optimizing the cooling performance of Parallel-Plain Fin (PPF) heat sink module based on the Taguchi method. The numerical simulative analyses of PPF heat sink module have been constructed to understand the affecting situation of its related modeling parameters. The design parameters evaluated are the outline design of the heat sink module and the wind capacity of fan, and the highest temperature (or thermal resistance) of this module is considered as the performance characteristics. Taguchi method for design of experiment (DOE) and the analysis of variance (ANOVA) are employed to efficiently seek the combination of optimized design parameters. From the numerical simulative analyses, the optimum design parameters to obtain the lowest value of the highest temperature (or thermal resistance) are found, which is the target of this research.  相似文献   

18.
A three-dimensional analysis procedure for the thermal performance of a manifold microchannel heat sink has been developed and applied to optimize the heat-sink design. The system of fully elliptic equations, that govern the flow and thermal fields, are solved by a SIMPLE-type finite volume method, while the optimal geometric shape is traced by a steepest descent technique. For a given pumping power, the optimal design variables that minimize the thermal resistance are obtained iteratively. The procedure is robust and the optimal state is reached within six global iterations. Comparing with the comparable traditional microchannel heat sink, the thermal resistance is reduced by more than a half while the temperature uniformity on the heated wall is improved by tenfold. The sensitivity of the thermal performance on each design variable is also examined and presented in the paper. Among various design variables, the channel width and depth are more crucial than others to the heat-sink performance. The optimal dimensions and corresponding thermal resistance have a power-law dependence on the pumping power.  相似文献   

19.
Experiments were conducted to investigate forced convective cooling performance of a copper microchannel heat sink with Al2O3/water nanofluid as the coolant. The microchannel heat sink fabricated consists of 25 parallel rectangular microchannels of length 50 mm with a cross-sectional area of 283 μm in width by 800 μm in height for each microchannel. Hydraulic and thermal performances of the nanofluid-cooled microchannel heat sink have been assessed from the results obtained for the friction factor, the pumping power, the averaged heat transfer coefficient, the thermal resistance, and the maximum wall temperature, with the Reynolds number ranging from 226 to 1676. Results show that the nanofluid-cooled heat sink outperforms the water-cooled one, having significantly higher average heat transfer coefficient and thereby markedly lower thermal resistance and wall temperature at high pumping power, in particular. Despite the marked increase in dynamic viscosity due to dispersing the alumina nanoparticles in water, the friction factor for the nanofluid-cooled heat sink was found slightly increased only.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号