首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exploration of thermal performances of composite high-pressure hydrogen storage tank under fire exposure were critical issues to reduce the risk of tank rupture. Three bonfire tests of type III tanks of 210 L-35 MPa with full compressed hydrogen were exposed to a pool fire to study the response behaviours in fire scenarios. Detailed data on the tank wall temperature and inner pressure were presented in this work. Prototype bonfire tests for the type III tank indicated the failure pressure limits amounted to 41.1–41.8 MPa (average 41.4 MPa). Two consequences (rupture and hydrogen blowdown) will be caused when the inner pressure beyond this limits in fire scenario. The loading-bearing capacity of the tank reduced nearly 3 times under the prescribed fire condition when compared to its average burst pressure of 123.5 MPa conducted from the hydraulic burst test. Results also shown that fire resistance rating (FRR, time to rupture) of the three tanks were 784, 666, and 596, respectively. The FRR got shorter when the tank was exposed in the engulfing fire in advance at hydrogen blowdown case.  相似文献   

2.
This study is driven by the need to understand requirements to safe blow-down of hydrogen onboard storage tanks through a pressure relief device (PRD) inside a garage-like enclosure with low natural ventilation. Current composite tanks for high pressure hydrogen storage have been shown to rupture in 3.5–6.5 min in fire conditions. As a result a large PRD venting area is currently used to release hydrogen from the tank before its catastrophic failure. However, even if unignited, the release of hydrogen from such PRDs has been shown in our previous studies to result in unacceptable overpressures within the garage capable of causing major damage and possible collapse of the structure. Thus, to prevent collapse of the garage in the case of a malfunction of the PRD and an unignited hydrogen release there is a clear need to increase blow-down time by reducing PRD venting area. Calculations of PRD diameter to safely blow-down storage tanks with inventories of 1, 5 and 13 kg hydrogen are considered here for a range of garage volumes and natural ventilation expressed in air changes per hour (ACH). The phenomenological model is used to examine the pressure dynamics within a garage with low natural ventilation down to the known minimum of 0.03 ACH. Thus, with moderate hydrogen flow rate from the PRD and small vents providing ventilation of the enclosure there will be only outflow from the garage without any air intake from outside. The PRD diameter, which ensures that the pressure in the garage does not exceed a value of 20 kPa (accepted in this study as a safe overpressure for civil structures) was calculated for varying garage volumes and natural ventilation (ACH). The results are presented in the form of simple to use engineering nomograms. The conclusion is drawn that PRDs currently available for hydrogen-powered vehicles should be redesigned along with either a change of requirements for the fire resistance rating or innovative design of the onboard storage system as hydrogen-powered vehicles are intended for garage parking. Further research is needed to develop safety strategies and engineering solutions to tackle the problem of fire resistance of onboard storage tanks and requirements to PRD performance. Regulation, codes and standards in the field should address this issue.  相似文献   

3.
The accidental releases of hydrogen from liquid storage and the subsequent consequences are studied from a harm perspective rather than a standpoint of risk. The cold, thermal and overpressure effects from hydrogen cold cloud, fireball, jet fire, flash fire, and vapor cloud explosion are evaluated in terms of two kinds of effect distances based on lethal and harmful criteria. Results show that for instantaneous release, the sequence of effect distances is vapor cloud explosion > flash fire > cold cloud > fireball, and for continuous release, the sequence is vapor cloud explosion > flash fire > jet fire > cold cloud. An overall comparison between instantaneous and continuous release reveals that the catastrophic rupture, rather than leakages, is the dominant event. Besides, the effect distances of liquid hydrogen tank are compared with those of 70 MPa gaseous storage with equivalent mass. Compared with 70 MPa gaseous storage, the liquid hydrogen storage may be safer under leak scenarios but more dangerous under catastrophic rupture scenario.  相似文献   

4.
The underlying physical mechanisms leading to the generation of blast waves after liquid hydrogen (LH2) storage tank rupture in a fire are not yet fully understood. This makes it difficult to develop predictive models and validate them against a very limited number of experiments. This study aims at the development of a CFD model able to predict maximum pressure in the blast wave after the LH2 storage tank rupture in a fire. The performed critical review of previous works and the thorough numerical analysis of BMW experiments (LH2 storage pressure in the range 2.0–11.3 bar abs) allowed us to conclude that the maximum pressure in the blast wave is generated by gaseous phase starting shock enhanced by combustion reaction of hydrogen at the contact surface with heated by the shock air. The boiling liquid expanding vapour explosion (BLEVE) pressure peak follows the gaseous phase blast and is smaller in amplitude. The CFD model validated recently against high-pressure hydrogen storage tank rupture in fire experiments is essentially updated in this study to account for cryogenic conditions of LH2 storage. The simulation results provided insight into the blast wave and combustion dynamics, demonstrating that combustion at the contact surface contributes significantly to the generated blast wave, increasing the overpressure at 3 m from the tank up to 5 times. The developed CFD model can be used as a contemporary tool for hydrogen safety engineering, e.g. for assessment of hazard distances from LH2 storage.  相似文献   

5.
The performance of a composite hydrogen storage tank with TPRD in an engulfing fire is studied. The non-adiabatic tank blowdown model, including in fire conditions, using the under-expanded jet theory is described. The model input includes thermal parameters of hydrogen and tank materials, heat flux from a fire to the tank, TPRD diameter and TPRD initiation delay time. The unsteady heat transfer from surroundings through the tank wall and liner to hydrogen accounts for the degradation of the composite overwrap resin and melting of the liner. The model is validated against the blowdown experiment and the destructive fire test with a tank without TPRD. The model accurately reproduces experimentally measured hydrogen pressure and temperature dynamics, blowdown time, and tank's fire-resistance rating, i.e. time to tank rupture in a fire without TPRD. The lower limit for TPRD orifice diameter sufficient to prevent the tank rupture in a fire and, at the same time, to reduce the flame length and mitigate the pressure peaking phenomenon in a garage to exclude its destruction, is assessed for different tanks, e.g. it is 0.75 mm for largest studied 244 L, 70 MPa tank. The phenomenon of Type IV tank liner melting for TPRD with lower diameter is revealed and its influence on hydrogen blowdown is assessed. This phenomenon facilitates the blowdown yet requires further detailed experimental validation.  相似文献   

6.
Reliable design and safe operation of heavy-duty hydrogen refueling stations are essential for the successful deployment of heavy-duty fuel cell electric vehicles (FCEVs). Fueling heavy-duty FCEVs is different from light-duty vehicles in terms of the dispensed hydrogen quantities and fueling rates, requiring tailored fueling station design for each vehicle class. In particular, the selection and design of the onboard hydrogen storage tank system and the fueling performance requirements influence the safe design of hydrogen fueling stations. A thermodynamic modeling and analysis are performed to evaluate the impact of various fueling parameters and boundary conditions on the fueling performance of heavy-duty FCEVs. We studied the effect of dispenser pressure ramp rate and precooling temperature, initial tank temperature and pressure, ambient temperature, and onboard storage design parameters, such as onboard storage pipe diameter and length, on the fueling rate and final vehicle state-of-charge, while observing prescribed tank pressure and temperature safety limits. An important finding was the sensitivity of the temporal fueling rate profile and the final tank state of charge to the design factors impacting pressure drop between the dispenser and vehicle tank, including onboard storage pipe diameter selection, and flow coefficients of nozzle, valves, and fittings. The fueling rate profile impacts the design and cost of the hydrogen precooling unit upstream of the dispenser.  相似文献   

7.
First responders are facing new challenges in handling hydrogen vehicle accidents. Hazard analyses, physical effects evaluations, and accident progression studies are performed to develop appropriate emergency response strategies. Results show that hydrogen release from thermally-activated pressure relief device and catastrophic tank rupture are the two major accidents leading to large hazard zones. Three types of hazard distances and accident durations are determined by the novel nomograms built in the paper. The nomograms indicate that fireball radiation leads to longer hazard distances than overpressure effects in the event of catastrophic tank rupture. Based on the hydrogen physical effects evaluations and accident progression analyses, new emergency response strategies are developed to deal with the typical accidents of hydrogen vehicles, including traffic collision on a road, vehicle fire in a parking lot, and hydrogen leak during refueling at a station. Rapid initial assessment techniques, firefighting strategy, rescue operation tactics and waste disposal pre-treatment are proposed.  相似文献   

8.
Cryogenic compressed hydrogen tank may open new possibilities for onboard storage due to its high energy density and acceptable thermal endurance. As promising hydrogen storage for commercial use, its hazards need comprehensive investigation. This paper studies the consequences of accidental hydrogen releases from cryo-compressed storage and evaluates the cold effects, thermal effects, and overpressure and missile effects. Two typical storage conditions for a fuel cell car are considered, including driving condition and quasi-venting condition after a long-term of parking. Results show that flash fire and vapor cloud explosion can be considered as the leading consequences. Without ignition, catastrophic rupture may be more dangerous than leakages but with ignition the results may vary for different release diameters. For leakages, quasi-venting condition may be more dangerous than driving condition. However, for catastrophic rupture, the results may be not uniformed but depend on whether and when the hydrogen is ignited. Moreover, the influences of wind velocity and atmospheric pressure are also investigated.  相似文献   

9.
With the anticipated introduction of hydrogen fuel cell vehicles to the market, there is an increasing need to address the fire resistance of hydrogen cylinders for onboard storage. Sufficient fire resistance is essential to ensure safe evacuation in the event of car fire accidents. The authors have developed a Finite Element (FE) model for predicting the thermal response of composite hydrogen cylinders within the frame of the open source FE code Elmer. The model accounts for the decomposition of the polymer matrix and effects of volatile gas transport in the composite. Model comparison with experimental data has been conducted using a classical one-dimensional test case of polymer composite subjected to fire. The validated model was then used to analyze a type-4 hydrogen cylinder subjected to an engulfing external propane fire, mimicking a published cylinder fire experiment. The external flame is modelled and simulated using the open source code FireFOAM. A simplified failure criteria based on internal pressure increase is subsequently used to determine the cylinder fire resistance.  相似文献   

10.
The paper addresses the reproducibility of the fire test in the United Nations “Global technical regulation on hydrogen and fuel cell vehicles” (GTR#13) and similar fire test protocols in other regulations, codes and standards (RCS). Currently, GTR#13 requires controlling the flame temperature beneath the tank. An original Ulster conjugate heat transfer numerical model was applied to carry out a study demonstrating the dependence of a fire resistance rating (FRR) of a composite hydrogen tank on a fire heat release rate (HRR). No thermally activated pressure relief device was used. The validation experiments conducted afterwards at Karlsruhe Institute of Technology (KIT) plus a former USA fire test have confirmed the Ulster's conclusion to control not only temperatures, yet the fire HRR. This will improve the GTR#13 fire test reproducibility in different laboratories worldwide. The numerically observed variations of FRR were confirmed by the unique experimental data of the authors' collaborators: FRR = 16–22 min for HRR = 79 kW, 7–8 min (HRR = 165 kW) – both tests were carried out at KIT with identical 36 L volume and 700 bar pressure tanks; and 6–7 min (HRR = 370 kW), though this test in USA was performed with a larger volume tank of 72.4 L and 350 bar. The data on pool fire test with significantly higher HRR, i.e. 4100 kW, and tank volume of 100 L and 700 bar pressure confirmed the “saturation” effect in the dependence of FRR on HRR at HRR above 350 kW. The results of the study underpin the suggested amendment to GTR#13 to improve the reproducibility of the fire test and perform tests with onboard storage tanks at HRR>350 kW.  相似文献   

11.
An investigation of liquid-hydrogen storage and refueling systems for vehicular applications was made in a recently completed project. The vehicle used in the project was a 1979 Buick Century sedan with a 3.8.1, displacement turbocharged V6 engine and an automatic transmission. The vehicle had a fuel economy for driving in the high altitude Los Alamos area that was equivalent to 2.4 km/l of liquid hydrogen or 8.9 km/l of gasoline on an equivalent energy basis. About 22% less energy was required using hydrogen rather than gasoline to go a given distance based on the Environmental Protection Agency estimate of 7.2 km/l of gasoline for this vehicle. At the end of the project the engine had been operated for 138 h and the car driven 3633 km during the 17 months that the vehicle was operated on hydrogen. Two types of onboard liquid-hydrogen storage tanks were tested in the vehicle; the first was an aluminium Dewar with a liquid-hydrogen capacity of 1101.; the second was a Dewar with an aluminium outer vessel, two copper vapor-cooled thermal radiation shields, and a stainless steel inner vessel with a liquid-hydrogen capacity of 1551. The Buick had an unrefueled range of about 274 km with the first liquid-hydrogen tank and about 362 km with the second. The Buick was fueled at least 65 times involving a minimum of 8.1 kl of liquid hydrogen using various liquid-hydrogen storage Dewars at Los Alamos and a semiautomatic refueling station. A refueling time of 9 min was achieved, and liquid-hydrogen losses during refueling were measured. The project has demonstrated that liquid-hydrogen storage onboard a vehicle, and its refueling, can be accomplished over an extended period without any major difficulties; nevertheless, appropriate testing is still needed to quantitatively address the question of safety for liquid-hydrogen storage onboard a vehicle.  相似文献   

12.
Efficiencies of hydrogen storage systems onboard fuel cell vehicles   总被引:2,自引:1,他引:2  
Energy efficiency, vehicle weight, driving range, and fuel economy are compared among fuel cell vehicles (FCV) with different types of fuel storage and battery-powered electric vehicles. Three options for onboard fuel storage are examined and compared in order to evaluate the most energy efficient option of storing fuel in fuel cell vehicles: compressed hydrogen gas storage, metal hydride storage, and onboard reformer of methanol. Solar energy is considered the primary source for fair comparison of efficiencies for true zero emission vehicles. Component efficiencies are from the literature. The battery powered electric vehicle has the highest efficiency of conversion from solar energy for a driving range of 300 miles. Among the fuel cell vehicles, the most efficient is the vehicle with onboard compressed hydrogen storage. The compressed gas FCV is also the leader in four other categories: vehicle weight for a given range, driving range for a given weight, efficiency starting with fossil fuels, and miles per gallon equivalent (about equal to a hybrid electric) on urban and highway driving cycles.  相似文献   

13.
A physical model to simulate thermal behaviour of an onboard storage tank and parameters of hydrogen inside the tank during fuelling is described. The energy conservation equation, Abel-Noble real gas equation of state, and the entrainment theory are applied to calculate the dynamics of hydrogen temperature inside the tank and distribution of temperature through the wall to satisfy requirements of the regulation. Convective heat transfer between hydrogen, tank wall and the atmosphere are modelled using Nusselt number correlations. An original methodology, based on the entrainment theory, is developed to calculate changing velocity of the gas inside the tank during the fuelling. Conductive heat transfer through the tank wall, composed of a load-bearing carbon fibre reinforced polymer and a liner, is modelled by employing one-dimensional unsteady heat transfer equation. The model is validated against experiments on fuelling of Type III and Type IV tanks for hydrogen onboard storage. Hydrogen temperature dynamics inside a tank is simulated by the model within the experimental non-uniformity of 5 °C. The calculation procedure is time efficient and can be used for the development of automated hydrogen fuelling protocols and systems.  相似文献   

14.
A thermodynamic analysis of refueling of a gaseous hydrogen fuel tank is described. This study may lend itself to the applications of refueling a hydrogen storage tank onboard a hydrogen fuel-cell vehicle. The gaseous hydrogen is treated as an ideal or a non-ideal gas. The refueling process is analyzed based on adiabatic, isothermal, or diathermal condition of the tank. A constant feed-rate is assumed in the analysis. The thermodynamic state of the feed stream also remains constant during refueling. Ideal-gas assumption results in simple closed-form expressions for tank temperature, pressure, and other parameters. The non-ideal behavior of high-pressure gaseous hydrogen is addressed using the newly developed equation of state for normal hydrogen, which is based on the reduced Helmholtz free energy formulation. Sample calculations are presented using initial tank and feed stream conditions commensurate to practical vehicular applications. Comparing to the non-ideal analysis, the ideal-gas assumption always results in under-prediction of the tank temperature and pressure irrespective of the filling condition. For a given target tank pressure, the refueling time is the shortest under adiabatic condition and is the longest under isothermal condition with the tank being maintained at the initial tank temperature. The adiabatic and isothermal conditions can be viewed, respectively, as the lower and upper bounds of the refueling time for a given final target tank pressure.  相似文献   

15.
Hydrogen storage is often cited as the greatest obstacle to achieving a hydrogen economy free of environmental pollution and dependence on foreign oil. A compact high-pressure cryogenic storage system has promising features to the storage challenge associated with hydrogen-powered vehicles. Cryogenic pressure vessels consist of an inner vessel designed for high pressure (350 bar) insulated with reflective sheets of metalized plastic and enclosed within an outer metallic vacuum jacket. When filled with pressurized liquid hydrogen, cryogenic pressure vessels become the most compact form of hydrogen storage available. A recent prototype is the only automotive hydrogen vessel meeting both Department of Energy's 2017 weight and volume targets. When installed onboard an experimental vehicle, a cryogenic pressure vessel demonstrated the longest driving distance with a single H2 tank (1050 km). In a subsequent experiment, the vessel demonstrated unprecedented thermal endurance: 8 days parking with no evaporative losses, extending to a month if the vehicle is driven as little as 8 km per day. Calculations indicate that cryogenic vessels offer compelling safety advantages and the lowest total ownership cost of hydrogen storage technologies. Long-term (∼10 years) vacuum stability (necessary for high performance thermal insulation) is the key outstanding technical challenge. Testing continues to establish technical feasibility and safety.  相似文献   

16.
根据API581基于风险的检验原理.采用储罐RBI软件对一大型储罐群进行了风险评估,得到了储罐壁板和底板的失效可能性、失效后果与风险等级。通过分析结果,识别出储罐的主要失效模式及损伤机理。针对不同的失效可能性等级和风险等级制定了相应的检验策略,达到降低风险的目的。  相似文献   

17.
The nomograms for graphical calculation of hazard distances and zones from a blast wave generated by a stand-alone (stationary) and an onboard (under-vehicle) high-pressure hydrogen tank ruptures in a fire are presented. The nomograms can be used by first responders, hydrogen safety engineers and other stakeholders to determine hazard distances and zones based on a blast wave strength characterised by both overpressure and impulse. The nomograms were built using the validated physical model of a blast wave decay published by the authors and accounting for the contribution of combustion into the blast wave strength. Two types of nomograms are developed: one for on-site use by the first responders, and another for design of hydrogen systems and infrastructure by hydrogen safety engineers. The paper underlines the importance of international regulatory activities to unify harm to people and damage to buildings criteria across different countries.  相似文献   

18.
The study of compressed hydrogen releases from high-pressure storage systems has practical application for hydrogen and fuel cell technologies. Such releases may occur either due to accidental damage to a storage tank, connecting piping, or due to failure of a pressure release device (PRD). Understanding hydrogen behavior during and after the unintended release from a high-pressure storage device is important for development of appropriate hydrogen safety codes and standards and for the evaluation of risk mitigation requirements and technologies. In this paper, the natural and forced mixing and dispersion of hydrogen released from a high-pressure tank into a partially enclosed compartment is investigated using analytical models. Simple models are developed to estimate the volumetric flow rate through a choked nozzle of a high-pressure tank. The hydrogen released in the compartment is vented through buoyancy induced flow or through forced ventilation. The model is useful in understanding the important physical processes involved during the release and dispersion of hydrogen from a high-pressure tank into a compartment with vents at multiple levels. Parametric studies are presented to identify the relative importance of various parameters such as diameter of the release port and air changes per hour (ACH) characteristic of the enclosure. Compartment overpressure as a function of the size of the release port is predicted. Conditions that can lead to major damage of the compartment due to overpressure are identified. Results of the analytical model indicate that the fastest way to reduce flammable levels of hydrogen concentration in a compartment is by blowing through the vents. Model predictions for forced ventilation are presented which show that it is feasible to effectively and rapidly reduce the flammable concentration of hydrogen in the compartment following the release of hydrogen from a high-pressure tank.  相似文献   

19.
The safety of hydrogen generation process is a major concern. This paper discusses the quantitative analyzes of the risk imposed on neighborhood from the operation of a hydrogen generator using natural gas reforming process. For this purpose, after hazard identification, the frequency of scenarios was estimated using generic data. Quantitative risk assessment was applied for consequence modeling and risk estimation. The results revealed that, jet fire caused by a full bore rupture in Desulphurization reactor has the highest fatality (26person) and affects the largest area of 5102 m2. The lethality radius, maximum radiation and safe distance of this incident were 140 m, 370 kW/m2 and 225 m respectively. A full bore rupture in Reformer can lead to the most dangerous flash fire. In this incident the concentration of released material in LFL zone (area of 1483.17 m2) and ½ LEL zone (area of 1970.74 m2) were 61,125 ppm and 40,000 ppm respectively. QRA is a credible method to assess the risks of hydrogen generation process.  相似文献   

20.
A temperature-controlled hot water heat pump was simulated using heating in a vertical, domestic hot water storage tank. The influence of the return loop flow rate on stratification was investigated experimentally. The return loop is the water line that supplies a long line of consumers with hot water, and returns colder water to the middle of the hot water storage tank. The return temperature is a function of the length of the loop, insulation, and ambient conditions. Temperatures were measured as a function of time at different vertical locations on the centerline of the storage tank. The temperature distributions in the tank were compared for different return flow rates. A return flow rate of three tank volumes per day was identified as preferable, although good results were also obtained for less than three tank volumes per day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号