首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a metal hydride hydrogen storage reactor is analyzed from heat and mass transfer and entropy generation points of view. A transient two dimensional energy equation along with suitable reaction kinetics and entropy balance equation is solved numerically. Results are obtained keeping hydrogen flow rates constant during absorption and desorption. For a fixed mass of metal hydride in the reactor the amount of hydrogen transferred and the time in which the transfer takes place are kept fixed. Using the mathematical model the entropy generated during the process and the external cooling and heating fluid requirements are obtained. Results show how improvement in the design and/or operating conditions leads to reduced cooling and heating requirements and lower entropy generation. For the system considered in the study the internal heat transfer characteristics of the hydride bed are seen to influence the reactor performance significantly. With improved bed heat transfer the required heat transfer fluid temperature during desorption can be reduced and that during absorption can be increased significantly. This automatically leads to lower entropy generation and a more economic system operation. It is expected that the methodology proposed and the results presented in this study will be useful in the optimal design of metal hydride reactors for a variety of practical applications, including hydrogen storage.  相似文献   

2.
Metal-hydride (MH) reactors are one of the most promising approaches for hydrogen storage because of their low operating pressure, high storage volumetric density and high security. However, the heat transfer performance of the MH reactor for high hydrogenation rate is inferior. In this study, the heat transfer and hydrogen absorption process of metal hydride tank performance in Mg2Ni bed is analyzed numerically using commercial ANSYS-FLUENT software. The MH reactor is considered a cylindrical bed including a helical tube along with a central straight return tube for the cooling fluid. The effects of geometrical parameters including the tube diameter, the pitch size and the coil diameter as well as operational parameters on the heat exchanged and hydrogen absorption reactive time are evaluated comprehensively. The results showed that the helical heat exchanger along with central return tube could effectively improve heat exchanged between the cooling fluid and the metal alloy and reduce the temperature of the bed results in a higher rate of hydrogen absorption. For a proper configuration and geometry of the helical coil heat exchanger with a central return tube, the absorption reaction time is reduced by 24% to reach 90% of the storage capacity. After the optimization study of the geometrical parameters, a system with the heat exchanger tube diameter of 5 mm, coil diameter of 18 mm and the coil pitch value of 10 mm is recommended to have lower hydrogen absorption time and higher hydrogen storage capacity. The presented MH reactor can be applied for improvement of heat exchange and absorption process in industrial MH reactors.  相似文献   

3.
A metal hydride (MH) storage unit and a polymer electrolyte membrane (PEM) fuel cell (FC) stack were thermally integrated through a common water circulation loop. The low temperature waste heat dissipated from the fuel cell stack was used to enhance and ensure the release of hydrogen from the storage unit. A water-heated MH-tank can be made more compact than an air-heated MH-tank with external heating fins, due to more direct heat transfer between MH-alloy and heating/cooling media. A water-heated MH-tank will therefore have the potential for better kinetics for absorption and desorption of hydrogen.  相似文献   

4.
Hydrogen fuel cells are received increasingly wide attention in order to develop green ships and reduce greenhouse gas emissions in the field of waterway transportation. Metal hydrides (MHs) can be used to store hydrogen for green ships due to their high volumetric storage capacity and safety. Various measures should be considered in the design and manufacture process of the MH reactor to strengthen its performance of heat and mass transfer and obtain an acceptable hydrogen storage capacity. In this work, LaNi5 hydride is used as the hydrogen storage material and packed in the reactor. A basic axisymmetric numerical model for the hydrogen storage system without a heat exchanger has been developed and proved to be effective through the comparison between its simulation results and the published data during dehydriding. A hybrid heat exchanger, which is consisted of a phase change material (PCM) jacket and a coiled-tube, has been applied into the hydrogen storage system to relieve the thermal effect of MH in the dehydriding process on system performance. Effects of the heat transfer coefficient between the circulating heating water in the coil-tube and the MH bed, the temperature of circulating heating water and the pressure at the outlet on the dehydriding performance have been investigated. Based on parametric study, the relationships among the average dehydriding rate, the heat transfer coefficient, the heating water temperature and the outlet pressure have been found and fitted as simple equations. These fitted equations can be considered as a reference, which provides an important method to effectively control the dehydriding rate in order to satisfy the fuel requirement of the power unit and ensure the safe navigation of green ships in the future.  相似文献   

5.
This paper describes an application of a metal hydride (MH) sheet, which consists of MH powder, carbon fiber, and aramid pulp, in a metal hydride heat pump (MHHP) system with a TiFe0.9Ni0.1/La0.6Y0.4Ni4.9Al0.1 working pair (MH1/MH2). In the experiments, the effect of the use of MH sheet on the system performances was investigated, in which the MH sheets were used to replace part of the MH powder to improve the heat exchange performance. The sheets and powder were packed alternately into the MH beds in layers with an aspect ratio less than one. The MH sheet significantly accelerated the heat exchange ratio of both MH packed beds. Using the MH sheet in both reactors, the specific cooling power increased by 1.2 times. The results also indicated that the role of heat exchange in an MH2 reactor as a cooling output side was more important in the enhancement of system performance than that in an MH1 reactor as a heat source side. In addition, the proposed MH sheet was effective not only for improving the system performance but also for decreasing the stress on the reactor vessel due to the expansion of MH during the hydrogen absorption/desorption.  相似文献   

6.
Design of the heat exchanger in a metal hydride based hydrogen storage system influences the storage capacity, gravimetric hydrogen storage density, and refueling time for automotive on-board hydrogen storage systems. The choice of a storage bed design incorporating the heat exchanger and the corresponding geometrical design parameters is not obvious. A systematic study is presented to optimize the heat exchanger design using computational fluid dynamics (CFD) modeling. Three different shell and tube heat exchanger designs are chosen. In the first design, metal hydride is present in the shell and heat transfer fluid flows through straight parallel cooling tubes placed inside the bed. The cooling tubes are interconnected by conducting fins. In the second design, heat transfer fluid flows through helical tubes in the bed. The helical tube design permits use of a specific maximum distance between the metal hydride and the coolant for removing heat during refueling. In the third design, the metal hydride is present in the tubes and the fluid flows through the shell. An automated tool is generated using COMSOL-MATLAB integration to arrive at the optimal geometric parameters for each design type. Using sodium alanate as the reference storage material, the relative merits of each design are analyzed and a comparison of the gravimetric and volumetric hydrogen storage densities for the three designs is presented.  相似文献   

7.
This paper presents a comparative study of two cases of metal hydride hydrogen storage units working on (i) LaNi5 (ii) Compacts of LaNi5 incorporated with expanded natural graphite (ENG). It has been observed from the previous studies that the hydriding/dehydriding reactions eventually causes large strain changes, due to which the hydride forming metal alloys disintegrate and form a powder bed. Such reactor beds usually have a low thermal conductivity which minimizes the heat transfer phenomenon occurring during the absorption of hydrogen gas. Therefore, there is a need to implement heat augmentation methods to significantly enhance the thermal conductivity. The objective of this research is to present a 2-D numerical model using Finite Volume Method (FVM) and estimate the hydrogen storage performance of a cylindrical metal hydride bed for both the cases, i.e. powdered metal hydride bed and ENG compacts-based reactor bed at different values of inlet pressure and heat transfer fluid temperature. In this study, a detailed investigation on the absorption process reveals that reactor beds with compacted disks of LaNi5 and ENG demonstrate an enhanced effective thermal conductivity and efficient mass transfer. The simulation results show that a remarkable improvement in the heat transfer and hydrogen storage capacity with reduced absorption time can be achieved by using LaNi5 and ENG compacts. It was observed that the average reactor bed temperature dropped from 345.13 K to 337.37 K when the ENG based compacted disks was introduced into the reactor bed. Moreover, for supply pressure of 24 bar and fluid temperature of 293 K, the time taken to absorb hydrogen into the rector to achieve stabilized hydrogen storage capacity was estimated to be 446s and 232 s for the case of metal hydride and ENG compacts-based bed, respectively.  相似文献   

8.
The reaction between metal hydride (MH) and hydrogen gas generates substantial amount of heat. It must be removed rapidly to sustain the reaction in the metal hydride hydrogen storage reactor. Previous studies indicate that the performance of the reactor can be improved by inserting an efficient heat exchanger design inside the metal hydride bed. In the present study, a cylindrical shaped metal hydride system containing LaNi5, integrated with a finned tube heat exchanger assembly made of copper pin fins and tubes, is presented. A 3-D numerical model is formulated in COMSOL Multiphysics 4.4 to study the transient behavior of sorption process inside the reactor. Experimental data obtained from the literature is used to approve the legitimacy of the proposed model. Influence of various operating and geometric parameters on the total absorption time of the reactor has been investigated. It is found that hydrogen supply pressure is the most influencing factor to increase the absorption rate of hydrogen. Total absorption time of the reactor is found to be 636 s with maximum storage capacity of 1.4 wt% at the operating conditions of 15 bar H2 gas supply pressure, heat transfer fluid temperature of 298 K and flow rate of 6.75 l/min.  相似文献   

9.
In this paper, a novel 3D flexible tool for simulation of metal hydrides-based (LaNi5) hydrogen storage tanks is presented. The model is Finite Element-Based and considers coupled heat and mass transfer resistance through a non-uniform pressure and temperature metal hydride reactor. The governing equations were implemented and solved using the COMSOL Multiphysics simulation environment. A cylindrical reactor with different cooling system designs was simulated. The shortest reactor fill time (15 min) was obtained for a cooling design configuration consisting of twelve inner cooling tubes and an external cooling jacket. Additional simulations demonstrated that an increase of the hydride thermal conductivity can further improve the reactor dynamic performance, provided that the absorbent bed is sufficiently permeable to hydrogen.  相似文献   

10.
A novel cylindrical metal hydride (MH) reactor with loop-type finned tube and jacket heat exchanger was proposed in this work. This MH reactor is expected to possess high performance due to the enhanced heat transfer, compact structure and good gas tightness. A three-dimensional multi-physical model for hydrogen absorption was presented to investigate the evolutions of temperature and concentration in the MH bed, as well as the mean reaction rate of hydrogen absorption process. The effects of different fin configurations on the performance of the proposed MH reactor were also examined. It was indicated that the evolution curve of the mean reaction rate for the whole hydrogen absorption process can be divided into two stages. The reaction rate in the first stage is mainly dependent on the initial conditions (i.e., temperature and gas pressure) of MH bed, whereas the second stage is mainly influenced by the heat dissipation from MH bed to cooling fluid. For the proposed MH reactor, the total charging time for reaching 90% hydrogen saturation can be decreased by 56.8% and 81.9% as compared with that for cylindrical MH reactor with finned double U-shape tube heat exchanger and cylindrical MH reactor with finned single-tube heat exchanger, respectively. Also, it was found that the interlaced layout design of inner and outer fins can improve the uniformity of the temperature distribution inside the MH bed as compared with the parallel layout configuration. Besides, it was showed that increasing the number of fins with keeping the total fin volume constant, the absorption performance of the reactor can be improved.  相似文献   

11.
Novel metal hydride (MH) hydrogen storage tanks for fuel cell electric forklifts have been presented in this paper. The tanks comprise a shell side equipped with 6 baffles and a tube side filled with 120 kg AB5 alloy and 10 copper fins. The alloy manufactured by vacuum induction melting has good hydrogen storage performance, with high storage capacity of 1.6 wt% and low equilibrium pressure of 4 MPa at ambient temperature. Two types of copper fins, including disk fins and corrugated fins, and three kinds of baffles, including segmental baffles, diagonal baffles and hole baffles, were applied to enhance the heat transfer in metal hydride tanks. We used the finite element method to simulate the hydrogen refueling process in MH tanks. It was found that the optimized tank with corrugated fins only took 630 s to reach 1.5 wt% saturation level. The intensification on the tube side of tanks is an effective method to improve hydrogen storage performance. Moreover, the shell side flow field and hydrogen refueling time in MH tanks with different baffles were compared, and the simulated refueling time is in good agreement with the experimental data. The metal hydride tank with diagonal baffles shows the shortest hydrogen refueling time because of the highest velocity of cooling water. Finally, correlations regarding the effect of cooling water flow rate on the refueling time in metal hydride tanks were proposed for future industrial design.  相似文献   

12.
In energy systems, multi-generation including co-generation and tri-generation has gained tremendous interest in the recent years as an effective way of waste heat recovery. Solid oxide fuel cells are efficient power plants that not only generate electricity with high energy efficiency but also produce high quality waste heat that can be further used for hot and chilled water production. In this work, we present a concept of combined cooling, heating and power (CCHP) energy system which uses solar power as a primary energy source and utilizes a reversible solid oxide fuel cell (R-SOFC) for producing hydrogen and generating electricity in the electrolyser (SOEC) and fuel cell (SOFC) modes, respectively. The system uses “high temperature” metal hydride (MH) for storage of both hydrogen and heat, as well as “low temperature” MH's for the additional heat management, including hot water supply, residential heating during winter time, or cooling/air conditioning during summer time.The work presents evaluation of energy balances of the system components, as well as heat-and-mass transfer modelling of MH beds in metal hydride hydrogen and heat storage system (MHHS; MgH2), MH hydrogen compressor (MHHC; AB5; A = La + Mm, BNi + Co + Al + Mn) and MH heat pump (MHHP; AB2; A = Ti + Zr, BMn + Cr + Ni + Fe). A case study of a 3 kWe R-SOFC is analysed and discussed. The results showed that the energy efficiencies are 69.4 and 72.4% in electrolyser and fuel cell modes, respectively. The round-trip COP's of metal hydride heat management system (MHHC + MHHP) are close to 40% for both heating and cooling outputs. Moreover, the tri-generation leads to an improvement of 36% in round-trip energy efficiency as compared to that of a stand-alone R-SOFC.  相似文献   

13.
Thermal management of metal hydride (MH) hydrogen storage systems is critically important to maintain the hydrogen absorption and release rates at desired levels. Implementing thermal management arrangements introduces challenges at system level mostly related to system's overall mass, volume, energy efficiency, complexity and maintenance, long-term durability, and cost. Low effective thermal conductivity (ETC) of the MH bed (~0.1–0.3 W/mK) is a well-known challenge for effective implementation of different thermal management techniques. This paper comprehensively reviews thermal management solutions for the MH hydrogen storage used in fuel cell systems by also focusing on heat transfer enhancement techniques and assessment of heat sources used for this purpose. The literature recommended that the ETC of the MH bed should be greater than 2 W/mK, and heat transfer coefficient with heating/cooling media should be in the range of 1000–1200 W/m2K to achieve desired MH's performance. Furthermore, alternative heat sources such as fuel cell heat recovery or capturing MH heat during charging and releasing it back during discharging have also been thoroughly reviewed here. Finally, this review paper highlights the gaps and suggests directions accordingly for future research on thermal management for MH systems.  相似文献   

14.
Metal hydrides can store hydrogen at high volumetric efficiencies. As the process of charging hydrogen into a metal powder to form its hydride is exothermic, the heat released must be removed quickly to maintain a rapid charging rate. An effective heat removal method is to incorporate a heat exchanger such as a heat pipe within the metal hydride bed. In this paper, we describe a two-dimensional numerical study to predict the transient heat and mass transfer in a cylindrical metal hydride tank embedded with one or more heat pipes. Results from a parametric study of hydrogen storage efficiency are presented as a function of storage tank size, water jacket temperature and its convective heat transfer coefficient, and heat pipe radius and its convective heat transfer coefficient. The effect of enhancing the thermal conductivity of the metal hydride by adding aluminum foam is also investigated. The study reveals that the cooling water jacket temperature and the heat pipe's heat transfer coefficient are most influential in determining the heat removal rate. The addition of aluminum foam reduces the filling time as expected. For larger tanks, more than one heat pipe is necessary for rapid charging. It was found that using more heat pipes of smaller radii is better than using fewer heat pipes with larger radii. The optimal distribution of multiple heat pipes was also determined and it is shown that their relative position within the tank scales with the tank size.  相似文献   

15.
The absorption and desorption performances of a solid state (metal hydride) hydrogen storage device with a finned tube heat exchanger are experimentally investigated. The heat exchanger design consists of two “U” shaped cooling tubes and perforated annular copper fins. Copper flakes are also inserted in between the fins to increase the overall effective thermal conductivity of the metal hydride bed. Experiments are performed on the storage device containing 1 kg of hydriding alloy LaNi5, at various hydrogen supply pressures. Water is used as the heat transfer fluid. The performance of the storage device is investigated for different operating parameters such as hydrogen supply pressure, cooling fluid temperature and heating fluid temperature. The shortest charging time found is 490 s for the absorption capacity of 1.2 wt% at a supply pressure of 15 bar and cooling fluid temperature and velocity of 288 K and 1 m/s respectively. The effect of copper flakes on absorption performance is also investigated and compared with a similar storage device without copper flakes.  相似文献   

16.
Hydrogen storage performance for metal hydride (MH) reactor is restricted by the poor thermal conductivity of MH. In this study, the gradient porosity metal foam was added into MH reactor for enhancing heat transportation (GMF reactor), and its hydrogen absorption performance was investigated numerically in detail. Then, thermal resistance analysis was conducted to analyze the heat transportation in GMF reactor, and Genetic Algorithm was applied for optimizing metal foam distribution under different conditions. It was indicated that the hydrogenation performance for optimized two-layer GMF reactor was increased by 11.5% compared with uniform metal foam reactor (UMF reactor). The optimization results indicated that the optimal volumetric fractions of metal foam (VFMF) are about 0.08 for both optimized GMF reactor and UMF reactor with the trade-off of hydrogen storage capacity and hydrogen absorption rate. Then, a new indicator of comprehensive hydrogen storage performance (CHSP) for MH reactor was proposed, which includes the influence of hydrogen storage rate, hydrogen storage capacity, volumetric storage density and gravimetric storage density. Besides, the hydrogenation performance for optimized GMF reactor was improved with metal foam layer increasing, and the optimal porosity distribution was gradually approaching a specific power exponent trend. It was showed that the hydrogenation performance for power-exponent GMF reactor was increased by 2.8% and 18.2% compared with that of optimized four-layer GMF reactor and UMF reactor, respectively.  相似文献   

17.
This study is a continuation of the computational analysis of the reactor equipped with hexagonal honeycomb based heat transfer enhancements, performed in Part A of the study. In the present study, the performance of the metal alloy and the reactor is investigated experimentally. The gravimetric capacity and reaction kinetics of the alloy La0.9Ce0.1Ni5 are determined. The performance of the reactor under different external environments is noted. The influence of operating conditions such as supply pressure, heat transfer fluid, heat transfer fluid temperature on the reactor performance is investigated. Evaporative cooling as a heat removal technique for metal hydride based hydrogen storage reactors is tested for the first time and compared to conventional heat removal methods. It is found to improve the heat transfer from the alloy bed significantly.  相似文献   

18.
Hydrogenation of metals is an exothermic and reversible process. Thus, metal hydride reactors/devices become essentially heat-driven. Excellent heat control in the MH reactor is required to develop metal hydride devices such as H2 storage systems successfully. Few attempts at nature-inspired designs have proven to have good heat transfer capabilities. Based on this idea, the present study investigates novel bio-inspired leaf-vein type fins for the metal hydride reactor. Two reactor designs are proposed for heat transfer fluid flow, namely (i) central straight tube and (ii) narrow trapezoidal channels with 10 kg of LaNi5 as a sample alloy. Compared to longitudinal finned single tube reactors (LFSTR), these designs provided better heat transmission and temperature uniformity. For LFSTR, Case-1, and Case-2, 90% storage capacity was reached in 210, 145, and 80 s. Different fin configurations, such as parallel, inclined fins, and fins of different thicknesses, are investigated further in the design with narrow trapezoidal channels. The inclined fin configuration shows better performance, and it is further optimized by varying the inclination angle from 3 to 9° and the fin number from 2 to 4. The optimized design with a 7° inclination angle and four fins required 57 s to attain 90% storage capacity and reduced absorption time by 73% compared to LFSTR. The influence of operating parameters such as hydrogen supply pressure, inlet temperature, and velocity of the heat transfer fluid on the performance is evaluated for the optimized design.  相似文献   

19.
20.
A study of the hydrogen absorption and desorption processes using LaNi5 metal hydride is presented for investigation on the influences of expansion volume and heat convection. The hydrogen storage canister comprises a cylindrical metal bed and a void of expansion volume atop the metal. The expansion volume is considered as a domain of pure hydrogen gas. The gas motion in the metal hydride bed is treated as porous medium flow. Concepts of mass and energy conservation are incorporated in the model to depict the thermally coupled hydrogen absorption and desorption reactions. Simulation results show the expansion volume reduces the reaction rates by increasing thermal resistance to the heat transfer from the outside cooling/heating bath. The assumption usually adopted in simulating heat transfer in a metal hydride tank that heat convection in the reaction bed may be ignored is not valid when expansion volume is used because heat convection dominates the heat transfer through the expansion volume as well as the metal bed. The details of the thermal flow pattern are demonstrated. It is found that, due to the action of thermal buoyancy, circulations are likely to happen in the expansion volume. The hydrogen gas accordingly, instead of going directly between the inlet/outlet and the metal bed, tends to move with the circulation along the boundary of the expansion volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号